Unfortunately, multiple people are reporting linker warnings related to
`__rust_no_alloc_shim_is_unstable` after this change. The solution isn't
quite clear yet, let's revert to green for now, and try a reland with a
determined solution for `__rust_no_alloc_shim_is_unstable`.
This reverts commit c8b7f32434, reversing
changes made to 667247db71.
Simplify `LazyAttrTokenStream`
`LazyAttrTokenStream` is an unpleasant type: `Lrc<Box<dyn ToAttrTokenStream>>`. Why does it look like that?
- There are two `ToAttrTokenStream` impls, one for the lazy case, and one for the case where we already have an `AttrTokenStream`.
- The lazy case (`LazyAttrTokenStreamImpl`) is implemented in `rustc_parse`, but `LazyAttrTokenStream` is defined in `rustc_ast`, which does not depend on `rustc_parse`. The use of the trait lets `rustc_ast` implicitly depend on `rustc_parse`. This explains the `dyn`.
- `LazyAttrTokenStream` must have a `size_of` as small as possible, because it's used in many AST nodes. This explains the `Lrc<Box<_>>`, which keeps it to one word. (It's required `Lrc<dyn _>` would be a fat pointer.)
This PR moves `LazyAttrTokenStreamImpl` (and a few other token stream things) from `rustc_parse` to `rustc_ast`. This lets us replace the `ToAttrTokenStream` trait with a two-variant enum and also remove the `Box`, changing `LazyAttrTokenStream` to `Lrc<LazyAttrTokenStreamInner>`. Plus it does a few cleanups.
r? `@petrochenkov`
This commit does the following.
- Changes it from `Lrc<Box<dyn ToAttrTokenStream>>` to
`Lrc<LazyAttrTokenStreamInner>`.
- Reworks `LazyAttrTokenStreamImpl` as `LazyAttrTokenStreamInner`, which
is a two-variant enum.
- Removes the `ToAttrTokenStream` trait and the two impls of it.
The recursion limit must be increased in some crates otherwise rustdoc
aborts.
Support for `f16` and `f128` is varied across targets, backends, and
backend versions. Eventually we would like to reach a point where all
backends support these approximately equally, but until then we have to
work around some of these nuances of support being observable.
Introduce the `cfg_target_has_reliable_f16_f128` internal feature, which
provides the following new configuration gates:
* `cfg(target_has_reliable_f16)`
* `cfg(target_has_reliable_f16_math)`
* `cfg(target_has_reliable_f128)`
* `cfg(target_has_reliable_f128_math)`
`reliable_f16` and `reliable_f128` indicate that basic arithmetic for
the type works correctly. The `_math` versions indicate that anything
relying on `libm` works correctly, since sometimes this hits a separate
class of codegen bugs.
These options match configuration set by the build script at [1]. The
logic for LLVM support is duplicated as-is from the same script. There
are a few possible updates that will come as a follow up.
The config introduced here is not planned to ever become stable, it is
only intended to replace the build scripts for `std` tests and
`compiler-builtins` that don't have any way to configure based on the
codegen backend.
MCP: https://github.com/rust-lang/compiler-team/issues/866
Closes: https://github.com/rust-lang/compiler-team/issues/866
[1]: 555e1d0386/library/std/build.rs (L84-L186)
Avoid no-op unlink+link dances in incr comp
Incremental compilation scales quite poorly with the number of CGUs. This PR improves one reason for that.
The incr comp process hard-links all the files from an old session into a new one, then it runs the backend, which may just hard-link the new session files into the output directory. Then codegen hard-links all the output files back to the new session directory.
This PR (perhaps unimaginatively) fixes the silliness that ensues in the last step. The old `link_or_copy` implementation would be passed pairs of paths which are already the same inode, then it would blindly delete the destination and re-create the hard-link that it just deleted. This PR lets us skip both those operations. We don't skip the other two hard-links.
`cargo +stage1 b && touch crates/core/main.rs && strace -cfw -elink,linkat,unlink,unlinkat cargo +stage1 b` before and then after on `ripgrep-13.0.0`:
```
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
52.56 0.024950 25 978 485 unlink
34.38 0.016318 22 727 linkat
13.06 0.006200 24 249 unlinkat
------ ----------- ----------- --------- --------- ----------------
100.00 0.047467 24 1954 485 total
```
```
% time seconds usecs/call calls errors syscall
------ ----------- ----------- --------- --------- ----------------
42.83 0.014521 57 252 unlink
38.41 0.013021 26 486 linkat
18.77 0.006362 25 249 unlinkat
------ ----------- ----------- --------- --------- ----------------
100.00 0.033904 34 987 total
```
This reduces the number of hard-links that are causing perf troubles, noted in https://github.com/rust-lang/rust/issues/64291 and https://github.com/rust-lang/rust/issues/137560
Revert <https://github.com/rust-lang/rust/pull/138084> to buy time to
consider options that avoids breaking downstream usages of cargo on
distributed `rustc-src` artifacts, where such cargo invocations fail due
to inability to inherit `lints` from workspace root manifest's
`workspace.lints` (this is only valid for the source rust-lang/rust
workspace, but not really the distributed `rustc-src` artifacts).
This breakage was reported in
<https://github.com/rust-lang/rust/issues/138304>.
This reverts commit 48caf81484, reversing
changes made to c6662879b2.
Bitcode linkers like llvm-bitcode-linker or bpf linker hand over the target features to llvm during link stage. During link stage the `TyCtxt` is already gone so it is not possible to create a query for the global backend features any longer. The features preserved in `Session.target_features` only incorporate target features known to rustc. This would contradict with the behaviour during codegen stage which also passes target features to llvm which are unknown to rustc.
This commit adds target features as a field to the `CrateInfo` struct and queries the target features in its new function. This way the target features are preserved beyond tcx and available at link stage.
To make sure the `global_backend_features` query is always registered even if the CodegenBackend does not register it, this registration is added to the `provide`function of the `rustc_codegen_ssa` crate.
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
We already do this for a number of crates, e.g. `rustc_middle`,
`rustc_span`, `rustc_metadata`, `rustc_span`, `rustc_errors`.
For the ones we don't, in many cases the attributes are a mess.
- There is no consistency about order of attribute kinds (e.g.
`allow`/`deny`/`feature`).
- Within attribute kind groups (e.g. the `feature` attributes),
sometimes the order is alphabetical, and sometimes there is no
particular order.
- Sometimes the attributes of a particular kind aren't even grouped
all together, e.g. there might be a `feature`, then an `allow`, then
another `feature`.
This commit extends the existing sorting to all compiler crates,
increasing consistency. If any new attribute line is added there is now
only one place it can go -- no need for arbitrary decisions.
Exceptions:
- `rustc_log`, `rustc_next_trait_solver` and `rustc_type_ir_macros`,
because they have no crate attributes.
- `rustc_codegen_gcc`, because it's quasi-external to rustc (e.g. it's
ignored in `rustfmt.toml`).
Show files produced by `--emit foo` in json artifact notifications
Right now it is possible to ask `rustc` to save some intermediate representation into one or more files with `--emit=foo`, but figuring out what exactly was produced is difficult. This pull request adds information about `llvm_ir` and `asm` intermediate files into notifications produced by `--json=artifacts`.
Related discussion: https://internals.rust-lang.org/t/easier-access-to-files-generated-by-emit-foo/20477
Motivation - `cargo-show-asm` parses those intermediate files and presents them in a user friendly way, but right now I have to apply some dirty hacks. Hacks make behavior confusing: https://github.com/hintron/computer-enhance/issues/35
This pull request introduces a new behavior: now `rustc` will emit a new artifact notification for every artifact type user asked to `--emit`, for example for `--emit asm` those will include all the `.s` files.
Most users won't notice this behavior, to be affected by it all of the following must hold:
- user must use `rustc` binary directly (when `cargo` invokes `rustc` - it consumes artifact notifications and doesn't emit anything)
- user must specify both `--emit xxx` and `--json artifacts`
- user must refuse to handle unknown artifact types
- user must disable incremental compilation (or deal with it better than cargo does, or use a workaround like `save-temps`) in order not to hit #88829 / #89149