Update `use` keyword docs to describe precise capturing
I noticed that the standard library keyword docs for the `use` keyword haven't been updated yet to describe the new precise capturing syntax.
Make `profiler_builtins` an optional dependency of sysroot, not std
This avoids unnecessary rebuilds of std (and the compiler) when `build.profiler` is toggled off or on.
Fixes#131812.
---
Background: The `profiler_builtins` crate has been an optional dependency of std (behind a cargo feature) ever since it was added back in #42433. But as far as I can tell that has only ever been a convenient way to force the crate to be built, not a genuine dependency.
The side-effect of this false dependency is that toggling `build.profiler` causes a rebuild of std and the compiler, which shouldn't be necessary. This PR therefore makes `profiler_builtins` an optional dependency of the dummy sysroot crate (#108865), rather than a dependency of std.
What makes this change so small is that all of the necessary infrastructure already exists. Previously, bootstrap would enable the `profiler` feature on the sysroot crate, which would forward that feature to std. Now, enabling that feature directly enables sysroot's `profiler_builtins` dependency instead.
---
I believe this is more of a bootstrap change than a libs change, so tentatively:
r? bootstrap
- Since in almost all cases, there will only be 1 UEFI shell, share the
shell handle between all functions that require it.
Signed-off-by: Ayush Singh <ayush@beagleboard.org>
Rollup of 3 pull requests
Successful merges:
- #126207 (std::unix::stack_overflow::drop_handler addressing todo through libc …)
- #131864 (Never emit `vptr` for empty/auto traits)
- #131870 (compiletest: Store test collection context/state in two structs)
r? `@ghost`
`@rustbot` modify labels: rollup
Abstract the state type for futexes
In the same way that we expose `SmallAtomic` and `SmallPrimitive` to allow Windows to use a value other than an `AtomicU32` for its futex state, switch the primary futex state type from `AtomicU32` to `futex::Futex`. The `futex::Futex` type should be usable as an atomic value with underlying primitive type equal to `futex::Primitive`. (`SmallAtomic` is also renamed to `SmallFutex`).
This allows supporting the futex API on systems where the underlying kernel futex implementation requires more user state than simply an `AtomicU32`.
All in-tree futex implementations simply define {`Futex`,`Primitive`} directly as {`AtomicU32`,`u32`}.
Avoid use imports in `thread_local_inner!`
Previously, the use imports in `thread_local_inner!` can shadow user-provided types or type aliases of the names `Storage`, `EagerStorage`, `LocalStorage` and `LocalKey`. This PR fixes that by dropping the use imports and instead refer to the std-internal types via fully qualified paths. A basic test is added to ensure `thread_local!`s with static decls with type names that match the aforementioned std-internal type names can successfully compile.
Fixes#131863.
Bump libc to 0.2.161
Bumps libc to the latest release version 0.2.161 which
- includes libc support for the tier 3 RTEMS target
- fixes segfaults on 32-bit FreeBSD targets
- gets musl's `posix_spawn_file_actions_addchdir_np` for some spawn opts
Various fixes for Xous
This patchset includes several fixes for Xous that have crept in over the last few months:
* The `adjust_process()` syscall was incorrect
* Warnings have started appearing in `alloc` -- adopt the same approach as wasm, until wasm figures out a workaround
* Dead code warnings have appeared in the networking code. Add `allow(dead_code)` as these structs are used as IPC values
* Add support for `args` and `env`, which have been useful for running tests
* Update `unwinding` to `0.2.3` which fixes the recent regression due to changes in `asm!()` code
In the same way that we expose SmallAtomic and SmallPrimitive to allow
Windows to use a value other than an AtomicU32 for its futex state, this
patch switches the primary futex state type from AtomicU32 to
futex::Atomic. The futex::Atomic type should be usable as an atomic
value with underlying primitive type equal to futex::Primitive.
This allows supporting the futex API on systems where the underlying
kernel futex implementation requires more state than simply an
AtomicU32.
All in-tree futex implementations simply define {Atomic,Primitive}
directly as {AtomicU32,u32}.
uefi: Implement getcwd and chdir
- Using EFI Shell Protocol. These functions do not make much sense unless a shell is present.
- Return the exe dir in case shell protocol is missing.
r? `@joboet`
Some float methods are now `const fn` under the `const_float_methods` feature gate.
In order to support `min`, `max`, `abs` and `copysign`, the implementation of some intrinsics had to be moved from Miri to rustc_const_eval.
Autodiff Upstreaming - enzyme frontend
This is an upstream PR for the `autodiff` rustc_builtin_macro that is part of the autodiff feature.
For the full implementation, see: https://github.com/rust-lang/rust/pull/129175
**Content:**
It contains a new `#[autodiff(<args>)]` rustc_builtin_macro, as well as a `#[rustc_autodiff]` builtin attribute.
The autodiff macro is applied on function `f` and will expand to a second function `df` (name given by user).
It will add a dummy body to `df` to make sure it type-checks. The body will later be replaced by enzyme on llvm-ir level,
we therefore don't really care about the content. Most of the changes (700 from 1.2k) are in `compiler/rustc_builtin_macros/src/autodiff.rs`, which expand the macro. Nothing except expansion is implemented for now.
I have a fallback implementation for relevant functions in case that rustc should be build without autodiff support. The default for now will be off, although we want to flip it later (once everything landed) to on for nightly. For the sake of CI, I have flipped the defaults, I'll revert this before merging.
**Dummy function Body:**
The first line is an `inline_asm` nop to make inlining less likely (I have additional checks to prevent this in the middle end of rustc. If `f` gets inlined too early, we can't pass it to enzyme and thus can't differentiate it.
If `df` gets inlined too early, the call site will just compute this dummy code instead of the derivatives, a correctness issue. The following black_box lines make sure that none of the input arguments is getting optimized away before we replace the body.
**Motivation:**
The user facing autodiff macro can verify the user input. Then I write it as args to the rustc_attribute, so from here on I can know that these values should be sensible. A rustc_attribute also turned out to be quite nice to attach this information to the corresponding function and carry it till the backend.
This is also just an experiment, I expect to adjust the user facing autodiff macro based on user feedback, to improve usability.
As a simple example of what this will do, we can see this expansion:
From:
```
#[autodiff(df, Reverse, Duplicated, Const, Active)]
pub fn f1(x: &[f64], y: f64) -> f64 {
unimplemented!()
}
```
to
```
#[rustc_autodiff]
#[inline(never)]
pub fn f1(x: &[f64], y: f64) -> f64 {
::core::panicking::panic("not implemented")
}
#[rustc_autodiff(Reverse, Duplicated, Const, Active,)]
#[inline(never)]
pub fn df(x: &[f64], dx: &mut [f64], y: f64, dret: f64) -> f64 {
unsafe { asm!("NOP"); };
::core::hint::black_box(f1(x, y));
::core::hint::black_box((dx, dret));
::core::hint::black_box(f1(x, y))
}
```
I will add a few more tests once I figured out why rustc rebuilds every time I touch a test.
Tracking:
- https://github.com/rust-lang/rust/issues/124509
try-job: dist-x86_64-msvc
- Using EFI Shell Protocol. These functions do not make much sense
unless a shell is present.
- Return the exe dir in case shell protocol is missing.
Signed-off-by: Ayush Singh <ayush@beagleboard.org>
merge const_ipv4 / const_ipv6 feature gate into 'ip' feature gate
https://github.com/rust-lang/rust/issues/76205 has been closed a while ago, but there are still some functions that reference it. Those functions are all unstable *and* const-unstable. There's no good reason to use a separate feature gate for their const-stability, so this PR moves their const-stability under the same gate as their regular stability, and therefore removes the remaining references to https://github.com/rust-lang/rust/issues/76205.
std::fs::get_path freebsd update.
what matters is we re doing the right things as doing sizeof, rather than passing KINFO_FILE_SIZE (only defined on intel architectures), the kernel
making sure it matches the expectation in its side.
The allocator on Xous is now throwing warnings because the allocator
needs to be mutable, and allocators hand out mutable pointers, which
the `static_mut_refs` lint now catches.
Give the same treatment to Xous as wasm, at least until a solution is
devised for fixing the warning on wasm.
Signed-off-by: Sean Cross <sean@xobs.io>
Process arguments and environment variables are both passed by way of
Application Parameters. These are a TLV format that gets passed in as
the second process argument.
This patch combines both as they are very similar in their decode.
Signed-off-by: Sean Cross <sean@osdyne.com>
std: fix stdout-before-main
Fixes#130210.
Since #124881, `ReentrantLock` uses `ThreadId` to identify threads. This has the unfortunate consequence of breaking uses of `Stdout` before main: Locking the `ReentrantLock` that synchronizes the output will initialize the thread ID before the handle for the main thread is set in `rt::init`. But since that would overwrite the current thread ID, `thread::set_current` triggers an abort.
This PR fixes the problem by using the already initialized thread ID for constructing the main thread handle and allowing `set_current` calls that do not change the thread's ID.
Fixes#130210.
Since #124881, `ReentrantLock` uses `ThreadId` to identify threads. This has the unfortunate consequence of breaking uses of `Stdout` before main: Locking the `ReentrantLock` that synchronizes the output will initialize the thread ID before the handle for the main thread is set in `rt::init`. But since that would overwrite the current thread ID, `thread::set_current` triggers an abort.
This PR fixes the problem by using the already initialized thread ID for constructing the main thread handle and allowing `set_current` calls that do not change the thread's ID.
Migrate lib's `&Option<T>` into `Option<&T>`
Trying out my new lint https://github.com/rust-lang/rust-clippy/pull/13336 - according to the [video](https://www.youtube.com/watch?v=6c7pZYP_iIE), this could lead to some performance and memory optimizations.
Basic thoughts expressed in the video that seem to make sense:
* `&Option<T>` in an API breaks encapsulation:
* caller must own T and move it into an Option to call with it
* if returned, the owner must store it as Option<T> internally in order to return it
* Performance is subject to compiler optimization, but at the basics, `&Option<T>` points to memory that has `presence` flag + value, whereas `Option<&T>` by specification is always optimized to a single pointer.
LLVM 20 split out what used to be called b16b16 and correspond to aarch64
FEAT_SVE_B16B16 into sve-b16b16 and sme-b16b16.
Add sme-b16b16 as an explicit feature and update the codegen accordingly.
Decouple WASIp2 sockets from WasiFd
This is a follow up to #129638, decoupling WASIp2's socket implementation from WASIp1's `WasiFd` as discussed with `@alexcrichton.`
Quite a few trait implementations in `std::os::fd` rely on the fact that there is an additional layer of abstraction between `Socket` and `OwnedFd`. I thus had to add a thin `WasiSocket` wrapper struct that just "forwards" to `OwnedFd`. Alternatively, I could have added a lot of conditional compilation to `std::os::fd`, which feels even worse.
Since `WasiFd::sock_accept` is no longer accessible from `TcpListener` and since WASIp2 has proper support for accepting sockets through `Socket::accept`, the `std::os::wasi::net` module has been removed from WASIp2, which only contains a single `TcpListenerExt` trait with a `sock_accept` method as well as an implementation for `TcpListener`. Let me know if this is an acceptable solution.
Android: Debug assertion after setting thread name
While `prctl` cannot fail if it points to a valid buffer, it's still better to assert the result as it's done for other places.
std: replace `LazyBox` with `OnceBox`
This PR replaces the `LazyBox` wrapper used to allocate the pthread primitives with `OnceBox`, which has a more familiar API mirroring that of `OnceLock`. This cleans up the code in preparation for larger changes like #128184 (from which this PR was split) and allows some neat optimizations, like avoid an acquire-load of the allocation pointer in `Mutex::unlock`, where the initialization of the allocation must have already been observed.
Additionally, I've gotten rid of the TEEOS `Condvar` code, it's just a duplicate of the pthread one anyway and I didn't want to repeat myself.
what matters is we re doing the right things as doing sizeof, rather than
KINFO_FILE_SIZE (only defined on intel architectures), the kernel
making sure it matches the expectation in its side.
Add `get_line` confusable to `Stdin::read_line()`
This pull request resolves https://github.com/rust-lang/rust/issues/131091
---
I've updated tests for `tests/ui/attributes/rustc_confusables_std_cases` in order to verify this change is working as intended.
Before I submitted this pull request, I had a pull request to my local fork. If you're interested in seeing the conversation on that PR, go to https://github.com/JakenHerman/rust/pull/1.
---
**Testing**:
Run `./x.py test tests/ui/attributes/rustc_confusables_std_cases.rs`
impl `Default` for `HashMap`/`HashSet` iterators that don't already have it
This is a follow-up to #128261 that isn't included in that PR because it depends on:
* [x] rust-lang/hashbrown#542 (`Default`)
* [x] `hashbrown` release containing above
It also wasn't included in #128261 initially and should have its own FCP, since these are also insta-stable.
Changes added:
* `Default for hash_map::{Iter, IterMut, IntoIter, IntoKeys, IntoValues, Keys, Values, ValuesMut}`
* `Default for hash_set::{Iter, IntoIter}`
Changes that were added before FCP, but are being deferred to later:
* `Clone for hash_map::{IntoIter, IntoKeys, IntoValues} where K: Clone, V: Clone`
* `Clone for hash_set::IntoIter where K: Clone`
std: make `thread::current` available in all `thread_local!` destructors
... and thereby allow the panic runtime to always print the right thread name.
This works by modifying the TLS destructor system to schedule a runtime cleanup function after all other TLS destructors registered by `std` have run. Unfortunately, this doesn't affect foreign TLS destructors, `thread::current` will still panic there.
Additionally, the thread ID returned by `current_id` will now always be available, even inside the global allocator, and will not change during the lifetime of one thread (this was previously the case with key-based TLS).
The mechanisms I added for this (`local_pointer` and `thread_cleanup`) will also allow finally fixing #111272 by moving the signal stack to a similar runtime-cleanup TLS variable.
Update hashbrown to 0.15 and adjust some methods
This PR updates `hashbrown` to 0.15 in the standard library and adjust some methods as well as removing some as they no longer exists in Hashbrown it-self.
- `HashMap::get_many_mut` change API to return array-of-Option
- `HashMap::{replace_entry, replace_key}` are removed, FCP close [already finished](https://github.com/rust-lang/rust/issues/44286#issuecomment-2293825619)
- `HashSet::get_or_insert_owned` is removed as it no longer exists in hashbrown
Closes https://github.com/rust-lang/rust/issues/44286
r? `@Amanieu`
This PR replaces the `LazyBox` wrapper used to allocate the pthread primitives with `OnceBox`, which has a more familiar API mirroring that of `OnceLock`. This cleans up the code in preparation for larger changes like #128184 (from which this PR was split) and allows some neat optimizations, like avoid an acquire-load of the allocation pointer in `Mutex::unlock`, where the initialization of the allocation must have already been observed.
Additionally, I've gotten rid of the TEEOS `Condvar` code, it's just a duplicate of the pthread one anyway and I didn't want to repeat myself.
Rollup of 5 pull requests
Successful merges:
- #130630 (Support clobber_abi and vector/access registers (clobber-only) in s390x inline assembly)
- #131042 (Instantiate binders in `supertrait_vtable_slot`)
- #131079 (Update wasm-component-ld to 0.5.9)
- #131085 (make test_lots_of_insertions test take less long in Miri)
- #131088 (add fixme to remove LLVM_ENABLE_TERMINFO when minimal llvm version is 19)
r? `@ghost`
`@rustbot` modify labels: rollup
make test_lots_of_insertions test take less long in Miri
This is by far the slowest `std` test in Miri, taking >2min in https://github.com/rust-lang/miri-test-libstd CI. So let's make this `count` smaller. The runtime should be quadratic in `count` so reducing it to around 2/3 of it's previous value should cut the total time down to less than half -- making it still the slowest test, but by less of a margin. (And this way we still insert >64 elements into the HashMap, in case that power of 2 matters.)
There is a MinGW ABI bug that prevents `f16` and `f128` from being
usable on `windows-gnu` targets. This does not affect MSVC; however, we
have `f16` and `f128` tests disabled on all Windows targets.
Update the gating to only affect `windows-gnu`, which means `f16` tests
will be enabled. There is no effect for `f128` since the default
fallback is `false`.
Enable `f16` tests on x86 Apple platforms
These were disabled because Apple uses a special ABI for `f16`. `compiler-builtins` merged a fix for this in [1], which has since propagated to rust-lang/rust. Enable tests since there should be no remaining issues on these platforms.
[1]: https://github.com/rust-lang/compiler-builtins/pull/675
try-job: x86_64-apple-1
try-job: x86_64-apple-2
Mark some more types as having insignificant dtor
These were caught by https://github.com/rust-lang/rust/pull/129864#issuecomment-2376658407, which is implementing a lint for some changes in drop order for temporaries in tail expressions.
Specifically, the destructors of `CString` and the bitpacked repr for `std::io::Error` are insignificant insofar as they don't have side-effects on things like locking or synchronization; they just free memory.
See some discussion on #89144 for what makes a drop impl "significant"
Hook up std::net to wasi-libc on wasm32-wasip2 target
One of the improvements of the `wasm32-wasip2` target over `wasm32-wasip1` is better support for networking. Right now, p2 is just re-using the `std::net` implementation from p1. This PR adds a new net module for p2 that makes use of net from `sys_common` and calls wasi-libc functions directly.
There are currently a few limitations:
- Duplicating a socket is not supported by WASIp2 (directly returns an error)
- Peeking is not yet implemented in wasi-libc (we could let wasi-libc handle this, but I opted to directly return an error instead)
- Vectored reads/writes are not supported by WASIp2 (the necessary functions are available in wasi-libc, but they call WASIp1 functions which do not support sockets, so I opted to directly return an error instead)
- Getting/setting `TCP_NODELAY` is faked in wasi-libc (uses the fake implementation instead of returning an error)
- Getting/setting `SO_LINGER` is not supported by WASIp2 (directly returns an error)
- Setting `SO_REUSEADDR` is faked in wasi-libc (since this is done from `sys_common`, the fake implementation is used instead of returning an error)
- Getting/setting `IPV6_V6ONLY` is not supported by WASIp2 and will always be set for IPv6 sockets (since this is done from `sys_common`, wasi-libc will return an error)
- UDP broadcast/multicast is not supported by WASIp2 (since this is configured from `sys_common`, wasi-libc will return appropriate errors)
- The `MSG_NOSIGNAL` send flag is a no-op because there are no signals in WASIp2 (since explicitly setting this flag would require a change to `sys_common` and the result would be exactly the same, I opted to not set it)
Do those decisions make sense?
While working on this PR, I noticed that there is a `std::os::wasi::net::TcpListenerExt` trait that adds a `sock_accept()` method to `std::net::TcpListener`. Now that WASIp2 supports standard accept, would it make sense to remove this?
cc `@alexcrichton`
Clarifications for set_nonblocking methods
Closes#129903.
The issue mentions that `send`, `recv` and other operations are interpreted by some users as methods of `TcpSocket` which led to confusion since it hasn't them. To fix it I added "system" into the documentation as being more precise for two reasons:
* it's makes it clear that these names are system operations;
* it doesn't point to the location of these methods like `libc` because not every system is POSIX compatible.
Update `catch_unwind` doc comments for `c_unwind`
Updates `catch_unwind` doc comments to indicate that catching a foreign exception _will no longer_ be UB. Instead, there are two possible behaviors, though it is not specified which one an implementation will choose.
Nominated for t-lang to confirm that they are okay with making such a promise based on t-opsem FCP, or whether they would like to be included in the FCP.
Related: https://github.com/rust-lang/rust/issues/74990, https://github.com/rust-lang/rust/issues/115285, https://github.com/rust-lang/reference/pull/1226
These were disabled because Apple uses a special ABI for `f16`.
`compiler-builtins` merged a fix for this in [1], which has since
propagated to rust-lang/rust. Enable tests since there should be no
remaining issues on these platforms.
[1]: https://github.com/rust-lang/compiler-builtins/pull/675
Enable `f16` tests on platforms that were missing conversion symbols
The only requirement for `f16` support, aside from LLVM not crashing and no ABI issues, is that symbols to convert to and from `f32` are available. Since the update to compiler-builtins in https://github.com/rust-lang/rust/pull/125016, we now provide these on all platforms.
This also enables `f16` math since there are no further requirements.
Still excluded are platforms for which LLVM emits infinitely-recursing code.
try-job: arm-android
try-job: test-various
try-job: x86_64-fuchsia