Weak's type parameter may dangle on drop
Way back in 34076bc0c9, #\[may_dangle\] was added to Rc\<T\> and Arc\<T\>'s Drop impls. That appears to have been because a test added in #28929 used Arc and Rc with dangling references at drop time. However, Weak was not covered by that test, and therefore no #\[may_dangle\] was forced to be added at the time.
As far as dropping, Weak has *even less need* to interact with the T than Rc and Arc do. Roughly speaking #\[may_dangle\] describes generic parameters that the outer type's Drop impl does not interact with except by possibly dropping them; no other interaction (such as trait method calls on the generic type) is permissible. It's clear this applies to Rc's and Arc's drop impl, which sometimes drop T but otherwise do not interact with one. It applies *even more* to Weak. Dropping a Weak cannot ever cause T's drop impl to run. Either there are strong references still in existence, in which case better not drop the T. Or there are no strong references still in existence, in which case the T would already have been dropped previously by the drop of the last strong count.
Avoid zero-length memcpy in formatting
This has two separate and somewhat orthogonal commits. The first change adjusts the ToString general impl for all types that implement Display; it no longer uses the full format machinery, rather directly falling onto a `std::fmt::Display::fmt` call. The second change directly adjusts the general core::fmt::write function which handles the production of format_args! to avoid zero-length push_str calls.
Both changes target the fact that push_str will still call memmove internally (or a similar function), as it doesn't know the length of the passed string. For zero-length strings in particular, this is quite expensive, and even for very short (several bytes long) strings, this is also expensive. Future work in this area may wish to have us fallback to write_char or similar, which may be cheaper on the (typically) short strings between the interpolated pieces in format_args!.
This also checks the contents and not only the capacity in case IntoIter's clone implementation is changed to add capacity at the end. Extra capacity at the beginning would be needed to make InPlaceIterable work.
Co-authored-by: Giacomo Stevanato <giaco.stevanato@gmail.com>
The unsoundness is not in Peekable per se, it rather is due to the
interaction between Peekable being able to hold an extra item
and vec::IntoIter's clone implementation shortening the allocation.
An alternative solution would be to change IntoIter's clone implementation
to keep enough spare capacity available.
Implement the new desugaring from `try_trait_v2`
~~Currently blocked on https://github.com/rust-lang/rust/issues/84782, which has a PR in https://github.com/rust-lang/rust/pull/84811~~ Rebased atop that fix.
`try_trait_v2` tracking issue: https://github.com/rust-lang/rust/issues/84277
Unfortunately this is already touching a ton of things, so if you have suggestions for good ways to split it up, I'd be happy to hear them. (The combination between the use in the library, the compiler changes, the corresponding diagnostic differences, even MIR tests mean that I don't really have a great plan for it other than trying to have decently-readable commits.
r? `@ghost`
~~(This probably shouldn't go in during the last week before the fork anyway.)~~ Fork happened.
This avoids a zero-length write_str call, which boils down to a zero-length
memmove and ultimately costs quite a few instructions on some workloads.
This is approximately a 0.33% instruction count win on diesel-check.
BTree: no longer copy keys and values before dropping them
When dropping BTreeMap or BTreeSet instances, keys-value pairs are up to now each copied and then dropped, at least according to source code. This is because the code for dropping and for iterators is shared.
This PR postpones the treatment of doomed key-value pairs from the intermediate functions `deallocating_next`(`_back`) to the last minute, so the we can drop the keys and values in place. According to the library/alloc benchmarks, this does make a difference, (and a positive difference with an `#[inline]` on `drop_key_val`). It does not change anything for #81444 though.
r? `@Mark-Simulacrum`
Stablize {HashMap,BTreeMap}::into_{keys,values}
I would propose to stabilize `{HashMap,BTreeMap}::into_{keys,values}`( aka. `map_into_keys_values`).
Closes#75294.
For certain sorts of systems, programming, it's deemed essential that
all allocation failures be explicitly handled where they occur. For
example, see Linus Torvald's opinion in [1]. Merely not calling global
panic handlers, or always `try_reserving` first (for vectors), is not
deemed good enough, because the mere presence of the global OOM handlers
is burdens static analysis.
One option for these projects to use rust would just be to skip `alloc`,
rolling their own allocation abstractions. But this would, in my
opinion be a real shame. `alloc` has a few `try_*` methods already, and
we could easily have more. Features like custom allocator support also
demonstrate and existing to support diverse use-cases with the same
abstractions.
A natural way to add such a feature flag would a Cargo feature, but
there are currently uncertainties around how std library crate's Cargo
features may or not be stable, so to avoid any risk of stabilizing by
mistake we are going with a more low-level "raw cfg" token, which
cannot be interacted with via Cargo alone.
Note also that since there is no notion of "default cfg tokens" outside
of Cargo features, we have to invert the condition from
`global_oom_handling` to to `not(no_global_oom_handling)`. This breaks
the monotonicity that would be important for a Cargo feature (i.e.
turning on more features should never break compatibility), but it
doesn't matter for raw cfg tokens which are not intended to be
"constraint solved" by Cargo or anything else.
To support this use-case we create a new feature, "global-oom-handling",
on by default, and put the global OOM handler infra and everything else
it that depends on it behind it. By default, nothing is changed, but
users concerned about global handling can make sure it is disabled, and
be confident that all OOM handling is local and explicit.
For this first iteration, non-flat collections are outright disabled.
`Vec` and `String` don't yet have `try_*` allocation methods, but are
kept anyways since they can be oom-safely created "from parts", and we
hope to add those `try_` methods in the future.
[1]: https://lore.kernel.org/lkml/CAHk-=wh_sNLoz84AUUzuqXEsYH35u=8HV3vK-jbRbJ_B-JjGrg@mail.gmail.com/
Replace 'NULL' with 'null'
This replaces occurrences of "NULL" with "null" in docs, comments, and compiler error/lint messages. This is for the sake of consistency, as the lowercase "null" is already the dominant form in Rust. The all-caps NULL looks like the C macro (or SQL keyword), which seems out of place in a Rust context, given that NULL does not exist in the Rust language or standard library (instead having [`ptr::null()`](https://doc.rust-lang.org/stable/std/ptr/fn.null.html)).
i8 and u8::to_string() specialisation (far less asm).
Take 2. Around 1/6th of the assembly to without specialisation.
https://godbolt.org/z/bzz8Mq
(partially fixes#73533 )
Remove slice diagnostic item
...because it is unusally placed on an impl and is redundant with a lang item.
Depends on rust-lang/rust-clippy#7074 (next clippy sync). ~I expect clippy tests to fail in the meantime.~ Nope tests passed...
CC `@flip1995`
further split up const_fn feature flag
This continues the work on splitting up `const_fn` into separate feature flags:
* `const_fn_trait_bound` for `const fn` with trait bounds
* `const_fn_unsize` for unsizing coercions in `const fn` (looks like only `dyn` unsizing is still guarded here)
I don't know if there are even any things left that `const_fn` guards... at least libcore and liballoc do not need it any more.
`@oli-obk` are you currently able to do reviews?
Remove duplicated fn(Box<[T]>) -> Vec<T>
`<[T]>::into_vec()` does the same thing as `Vec::from::<Box<[T]>>()`, so they can be implemented in terms of each other. This was the previous implementation of `Vec::from()`, but was changed in #78461. I'm not sure what the rationale was for that change, but it seems preferable to maintain a single implementation.
Replace all `fmt.pad` with `debug_struct`
This replaces any occurrence of:
- `f.pad("X")` with `f.debug_struct("X").finish()`
- `f.pad("X { .. }")` with `f.debug_struct("X").finish_non_exhaustive()`
This is in line with existing formatting code such as
1255053067/library/std/src/sync/mpsc/mod.rs (L1470-L1475)