I added `tcx` argument to `internal` to force 'tcx to be the same
lifetime as TyCtxt. The only other solution I could think is to change
this function to be `unsafe`.
Simplify the `run` macro to avoid sometimes unnecessary dependency
on `TyCtxt`. Instead, users can use the new internal method `tcx()`.
Additionally, extend the macro to accept closures that may capture
variables.
These are non-backward compatible changes, but they only affect
internal APIs which are provided today as helper functions until we
have a stable API to start the compiler.
Make sure to instantiate placeholders correctly in old solver
When creating the query substitution guess for an input placeholder type like `!1_T` (in universe 1), we were guessing the response substitution with something like `!0_T`. This failed to unify with `!1_T`, causing an ICE.
This PR reworks the query substitution guess code to work a bit more like the new solver. I'm *pretty* sure this is correct, though I'd really appreciate some scrutiny from someone (*cough* lcnr) who knows a bit more about query instantiation :)
Fixes#119941
r? lcnr
Sandwich MIR optimizations between DSE.
This PR reorders MIR optimization passes in an attempt to increase their efficiency.
- Stop running CopyProp before GVN, it's useless as GVN will do the same thing anyway. Instead, we perform CopyProp at the end of the pipeline, to ensure we do not emit copy/move chains.
- Run DSE before GVN, as it increases the probability to have single-assignment locals.
- Run DSE after the final CopyProp to turn copies into moves.
r? `@ghost`
Avoid some redundant work in GVN
The first 2 commits are about reducing the perf effect.
Third commit avoids doing redundant work: is a local is SSA, it already has been simplified, and the resulting value is in `self.locals`. No need to call any code on it.
The last commit avoids removing some storage statements.
r? wg-mir-opt
never patterns: Check bindings wrt never patterns
Never patterns:
- Shouldn't contain bindings since they never match anything;
- Don't count when checking that or-patterns have consistent bindings.
r? `@compiler-errors`
Tune the inlinability of `unwrap`
Fixes#115463
cc `@thomcc`
This tweaks `unwrap` on ~~`Option` &~~ `Result` to be two parts:
- `#[inline(always)]` for checking the discriminant
- `#[cold]` for actually panicking
The idea here is that checking the discriminant on a `Result` ~~or `Option`~~ should always be trivial enough to be worth inlining, even in `opt-level=z`, especially compared to passing it to a function.
As seen in the issue and codegen test, this will hopefully help particularly for things like `.try_into().unwrap()`s that are actually infallible, but in a way that's only visible with the inlining.
EDIT: I've restricted this to `Result` to avoid combining effects
Fix `allow_internal_unstable` for `(min_)specialization`
Fixes#119950
Blocked on #119949 (comment doesn't make sense until that merges)
I'd like to follow this up and look for more instances of not properly checking spans for features but I wanted to fix the motivating issue.
Silence some follow-up errors [3/x]
this is one piece of the requested cleanups from https://github.com/rust-lang/rust/pull/117449
Keep error types around, even in obligations.
These help silence follow-up errors, as we now figure out that some types (most notably inference variables) are equal to an error type.
But it also allows figuring out more types in the presence of errors, possibly causing more errors.
Don't ICE when noting GAT bounds in `report_no_match_method_error`
We can encounter `BindingObligation`s from GATs that we should handle in `report_no_match_method_error`. I assume we can encounter them from methods, though I didn't really feel like wasting my time creating a repro.
Fixes#119942
Make `InferCtxtExt::could_impl_trait` more precise, less ICEy
The implementation for `InferCtxtExt::could_impl_trait` was very wrong. Along with being pretty poorly named, way too specific to ADTs, it was also doing impl substitution wrong -- this caused an ICE (#119915).
This PR generalizes that code, gives it a clearer name, makes it stop using the new trait solver (lol), and fixes some fallout bad suggestions that are made worse with the code fix.
Fixes#119915
store the segment name when resolution fails
Fixes#112672
The `find_cfg_stripped` does indeed get executed within `smart_resolve_report_errors`. However, this error is not reported as it is subsequently overridden by `parent_err`. (See: https://github.com/rust-lang/rust/blob/master/compiler/rustc_resolve/src/late.rs#L3760)
This PR changes `last_segment` to `segment`, which stores the name of the failed resolution, and ensures that the result of `find_cfg_stripped` is also included in `parent_err`.
r? ```@Nilstrieb```
Suggest Upgrading Compiler for Gated Features
This PR addresses #117318
I have a few questions:
1. Do we want to specify the current version and release date of the compiler? I have added this in via environment variables, which I found in the code for the rustc cli where it handles the `--version` flag
a. How can I handle the changing message in the tests?
3. Do we want to only show this message when the compiler is old?
a. How can we determine when the compiler is old?
I'll wait until we figure out the message to bless the tests
Move platform modules into `sys::pal`
This is the initial step of #117276. `sys` just re-exports everything from the current `sys` for now, I'll move the implementations for the individual features one-by-one after this PR merges.
Taint `_` placeholder types in trait impl method signatures
We report an error right below for them, but that kind of broken type can cause subsequent ICEs.
fixes#119867
Allow `~const` on associated type bounds again
This follows from [this Zulip discussion](https://rust-lang.zulipchat.com/#narrow/stream/419616-t-compiler.2Fproject-const-traits/topic/projections.20on.20.28~.29const.20Trait.20.26.20.28~.29const.20assoc.20ty.20bounds).
Basically in my opinion, it makes sense to allow `~const` on associated type bounds again since they're quite useful even though we haven't implemented the proposed syntax `<Ty as ~const Trait>::Proj`/`<Ty as const Trait>::Proj` yet; that can happen as a follow-up.
This already allows more code to compile since `T::Assoc` where `T` is a type parameter and where the predicate `<T as ~const Trait>` is in the environment gets elaborated to (pseudo) `<T as ~const Trait>::Assoc`.
```rs
#[const_trait]
trait Trait {
type Assoc: ~const Trait;
fn func() -> i32;
}
const fn function<T: ~const Trait>() -> i32 {
T::Assoc::func()
}
```
`~const` associated type bounds also work together with `const` bounds:
```rs
struct Type<const N: i32>;
fn procedure<T: const Trait>() -> Type<{ T::Assoc::func() }> { // `Trait` comes from above
Type
}
```
NB: This PR also starts allowing `~const` bounds in the generics and the where-clause of trait associated types since it's trivial to support them. However, I don't know if those bounds are actually useful. Maybe we should continue to reject them?
For reference, it wouldn't make any sense to allow `~const Trait` in GACs (generic associated constants, `generic_const_items`) because they'd be absolutely useless (contrary to `const Trait`).
~~[``@]rustbot`` ping project-const-traits~~
r? project-const-traits
Varargs support for system ABI
This PR allows functions with the `system` ABI to be variadic (under the `extended_varargs_abi_support` feature tracked in #100189). On x86 windows, the `system` ABI is equivalent to `C` for variadic functions. On other platforms, `system` is already equivalent to `C`.
Fixes#110505
Overhaul `-Ztreat-err-as-bug`
It's current behaviour is surprising, in a bad way. This also makes the implementation more complex than it needs to be.
r? `@oli-obk`
Add explicit `none()` value variant in check-cfg
This PR adds an explicit none value variant in check-cfg values: `values(none())`.
Currently the only way to define the none variant is with an empty `values()` which means that if someone has a cfg that takes none and strings they need to use two invocations: `--check-cfg=cfg(foo) --check-cfg=cfg(foo, values("bar"))`.
Which would now be `--check-cfg=cfg(foo, values(none(),"bar"))`, this is simpler and easier to understand.
`--check-cfg=cfg(foo)`, `--check-cfg=cfg(foo, values())` and `--check-cfg=cfg(foo, values(none()))` would be equivalent.
*Another motivation for doing this is to make empty `values()` actually means no-values, but this is orthogonal to this PR and adding `none()` is sufficient in it-self.*
`@rustbot` label +F-check-cfg
r? `@petrochenkov`
`-Ztreat-err-as-bug` treats normal errors and delayed bugs equally,
which can lead to some really surprising results.
This commit changes `-Ztreat-err-as-bug` so it ignores delayed bugs,
unless they get promoted to proper bugs and are printed.
This feels to me much simpler and more logical. And it simplifies the
implementation:
- The `-Ztreat-err-as-bug` check is removed from in
`DiagCtxt::{delayed_bug,span_delayed_bug}`.
- `treat_err_as_bug` doesn't need to count delayed bugs.
- The `-Ztreat-err-as-bug` panic message is simpler, because it doesn't
have to mention delayed bugs.
Output of delayed bugs is now more consistent. They're always printed
the same way. Previously when they triggered `-Ztreat-err-as-bug` they
would be printed slightly differently, via `span_bug` in
`span_delayed_bug` or `delayed_bug`.
A minor behaviour change: the "no errors encountered even though
`span_delayed_bug` issued" printed before delayed bugs is now a note
rather than a bug. This is done so it doesn't get counted as an error
that might trigger `-Ztreat-err-as-bug`, which would be silly.
This means that if you use `-Ztreat-err-as-bug=1` and there are no
normal errors but there are delayed bugs, the first delayed bug will be
shown (and the panic will happen after it's printed).
Also, I have added a second note saying "those delayed bugs will now be
shown as internal compiler errors". I think this makes it clearer what
is happening, because the whole concept of delayed bugs is non-obvious.
There are some test changes.
- equality-in-canonical-query.rs: Minor output changes, and the error
count reduces by one because the "no errors encountered even though
`span_delayed_bug` issued" message is no longer counted as an error.
- rpit_tait_equality_in_canonical_query.rs: Ditto.
- storage-live.rs: The query stack disappears because these delayed bugs
are now printed at the end, rather than when they are created.
- storage-return.rs, span_delayed_bug.rs: now need
`-Zeagerly-emit-delayed-bugs` because they need the delayed bugs
emitted immediately to preserve behaviour.
Fix unused_parens issue when cast is followed LT
Fixes#117142
The original check only checks `a as (i32) < 0`, this fix extends it to handle `b + a as (i32) < 0`.
A better way is maybe we suggest `(a as i32) < 0` instead of suppressing the warning, maybe following PR could improve it.
Give me a way to emit all the delayed bugs as errors (add `-Zeagerly-emit-delayed-bugs`)
This is probably a *better* way to inspect all the delayed bugs in a program that what exists currently (and therefore makes it very easy to choose the right number `N` with `-Zemit-err-as-bug=N`, though I guess the naming is a bit ironic when you pair both of the flags together, but that feels like naming bikeshed more than anything).
This pacifies my only concern with https://github.com/rust-lang/rust/pull/119871#issuecomment-1888170259, because (afaict?) that PR doesn't allow you to intercept a delayed bug's stack trace anymore, which as someone who debugs the compiler a lot, is something that I can *promise* that I do.
r? `@nnethercote` or `@oli-obk`
Remove special-casing around `AliasKind::Opaque` when structurally resolving in new solver
This fixes a few inconsistencies around where we don't eagerly resolve opaques to their (locally-defined) hidden types in the new solver. It essentially allows this code to work:
```rust
fn main() {
type Tait = impl Sized;
struct S {
i: i32,
}
let x: Tait = S { i: 0 };
println!("{}", x.i);
}
```
Since `Tait` is defined in `main`, we are able to poke through the type of `x` with deref.
r? lcnr