As a part of drop elaboration, we identify dead unwinds, i.e., unwind
edges on a drop terminators which are known to be unreachable, because
there is no need to drop anything.
Previously, the data flow framework was informed about the dead unwinds,
and it assumed those edges are absent from MIR. Unfortunately, the data
flow framework wasn't consistent in maintaining this assumption.
In particular, if a block was reachable only through a dead unwind edge,
its state was propagated to other blocks still. This became an issue in
the context of change removes DropAndReplace terminator, since it
introduces initialization into cleanup blocks.
To avoid this issue, remove unreachable unwind edges before the drop
elaboration, and elaborate only blocks that remain reachable.
Instead of loading the Fluent resources for every crate in
`rustc_error_messages`, each crate generates typed identifiers for its
own diagnostics and creates a static which are pulled together in the
`rustc_driver` crate and provided to the diagnostic emitter.
Signed-off-by: David Wood <david.wood@huawei.com>
Handle discriminant in DataflowConstProp
cc ``@jachris``
r? ``@JakobDegen``
This PR attempts to extend the DataflowConstProp pass to handle propagation of discriminants. We handle this by adding 2 new variants to `TrackElem`: `TrackElem::Variant` for enum variants and `TrackElem::Discriminant` for the enum discriminant pseudo-place.
The difficulty is that the enum discriminant and enum variants may alias each another. This is the issue of the `Option<NonZeroUsize>` test, which is the equivalent of https://github.com/rust-lang/unsafe-code-guidelines/issues/84 with a direct write.
To handle that, we generalize the flood process to flood all the potentially aliasing places. In particular:
- any write to `(PLACE as Variant)`, either direct or through a projection, floods `(PLACE as OtherVariant)` for all other variants and `discriminant(PLACE)`;
- `SetDiscriminant(PLACE)` floods `(PLACE as Variant)` for each variant.
This implies that flooding is not hierarchical any more, and that an assignment to a non-tracked place may need to flood a tracked place. This is handled by `for_each_aliasing_place` which generalizes `preorder_invoke`.
As we deaggregate enums by putting `SetDiscriminant` last, this allows to propagate the value of the discriminant.
This refactor will allow to make https://github.com/rust-lang/rust/pull/107009 able to handle discriminants too.
Treat Drop as a rmw operation
Previously, a Drop terminator was considered a move in MIR. This commit changes the behavior to only treat Drop as a mutable access to the dropped place.
In order for this change to be correct, we need to guarantee that
1. A dropped value won't be used again
2. Places that appear in a drop won't be used again before a
subsequent initialization.
We can ensure this to be correct at MIR construction because Drop will only be emitted when a variable goes out of scope, thus having:
* (1) as there is no way of reaching the old value. drop-elaboration
will also remove any uninitialized drop.
* (2) as the place can't be named following the end of the scope.
However, the initialization status, previously tracked by moves, should also be tied to the execution of a Drop, hence the additional logic in the dataflow analyses.
From discussion in [this thread](https://rust-lang.zulipchat.com/#narrow/stream/233931-t-compiler.2Fmajor-changes/topic/.60DROP.60.20to.20.60DROP_IF.60.20compiler-team.23558), originating from https://github.com/rust-lang/compiler-team/issues/558.
See also https://github.com/rust-lang/rust/pull/104488#discussion_r1085556010
Previously, a Drop terminator was considered a move in MIR.
This commit changes the behavior to only treat Drop as a mutable
access to the dropped place.
In order for this change to be correct, we need to guarantee that
a) A dropped value won't be used again
b) Places that appear in a drop won't be used again before a
subsequent initialization.
We can ensure this to be correct at MIR construction because Drop
will only be emitted when a variable goes out of scope,
thus having:
(a) as there is no way of reaching the old value. drop-elaboration
will also remove any uninitialized drop.
(b) as the place can't be named following the end of the scope.
However, the initialization status, previously tracked by moves,
should also be tied to the execution of a Drop, hence the
additional logic in the dataflow analyses.
This patch adds a `MirPass` that tracks the number of back-edges and
function calls in the CFG, adds a new MIR instruction to increment a
counter every time they are encountered during Const Eval, and emit a
warning if a configured limit is breached.
Convert all the crates that have had their diagnostic migration
completed (except save_analysis because that will be deleted soon and
apfloat because of the licensing problem).
Improve syntax of `newtype_index`
This makes it more like proper Rust and also makes the implementation a lot simpler.
Mostly just turns weird flags in the body into proper attributes.
It should probably also be converted to an attribute macro instead of function-like, but that can be done in a future PR.
Remove the `..` from the body, only a few invocations used it and it's
inconsistent with rust syntax.
Use `;` instead of `,` between consts. As the Rust syntax gods inteded.
This removes the `custom` format functionality as its only user was
trivially migrated to using a normal format.
If a new use case for a custom formatting impl pops up, you can add it
back.
Inline and remove `place_contents_drop_state_cannot_differ`.
It has a single call site and is hot enough to be worth inlining. And make sure `is_terminal_path` is inlined, too.
r? `@ghost`
compiler: remove unnecessary imports and qualified paths
Some of these imports were necessary before Edition 2021, others were already in the prelude.
I hope it's fine that this PR is so spread-out across files :/
This fixes a number of correctness issues from the previous version. Additionally, we use a new
strategy which has much better performance charactersitics and also finds more opportunities to
apply the optimization.