Add note when item accessed from module via `m.i` rather than `m::i`.
(I tried to make this somewhat future-proofed, in that the `UnresolvedNameContext` could be expanded in the future with other cases besides paths that are known to be modules.)
This supersedes PR #30356 ; since I'm responsible for a bunch of new code here, someone else should review it. :)
Instead of `ast::Ident`, bindings, paths and labels in HIR now keep a new structure called `hir::Ident` containing mtwt-renamed `name` and the original not-renamed `unhygienic_name`. `name` is supposed to be used by default, `unhygienic_name` is rarely used.
This is not ideal, but better than the status quo for two reasons:
- MTWT tables can be cleared immediately after lowering to HIR
- This is less bug-prone, because it is impossible now to forget applying `mtwt::resolve` to a name. It is still possible to use `name` instead of `unhygienic_name` by mistake, but `unhygienic_name`s are used only in few very special circumstances, so it shouldn't be a problem.
Besides name resolution `unhygienic_name` is used in some lints and debuginfo. `unhygienic_name` can be very well approximated by "reverse renaming" `token::intern(name.as_str())` or even plain string `name.as_str()`, except that it would break gensyms like `iter` in desugared `for` loops. This approximation is likely good enough for lints and debuginfo, but not for name resolution, unfortunately (see https://github.com/rust-lang/rust/issues/27639), so `unhygienic_name` has to be kept.
cc https://github.com/rust-lang/rust/issues/29782
r? @nrc
Fixes https://github.com/rust-lang/rust/issues/28692
Fixes https://github.com/rust-lang/rust/issues/28992
Fixes some other similar issues (see the tests)
[breaking-change], needs crater run (cc @brson or @alexcrichton )
The pattern with parens `UnitVariant(..)` for unit variants seems to be popular in rustc (see the second commit), but mostly used by one person (@nikomatsakis), according to git blame. If it causes breakage on crates.io I'll add an exceptional case for it.
Fixes#13677
This does the same sort of suggestion for misspelt macros that we already do for misspelt identifiers.
Example. Compiling this program:
```rust
macro_rules! foo {
($e:expr) => ( $e )
}
fn main() {
fob!("hello!");
}
```
gives the following error message:
```
/Users/mcp/temp/test.rs:7:5: 7:8 error: macro undefined: 'fob!'
/Users/mcp/temp/test.rs:7 fob!("hello!");
^~~
/Users/mcp/temp/test.rs:7:5: 7:8 help: did you mean `foo`?
/Users/mcp/temp/test.rs:7 fob!("hello!");
```
I had to move the levenshtein distance function into libsyntax for this. Maybe this should live somewhere else (some utility crate?), but I couldn't find a crate to put it in that is imported by libsyntax and the other rustc crates.
Replace `TypeNsDef` and `ValueNsDef` with a more general type `NsDef`.
Define a newtype `NameBinding` for `Rc<RefCell<Option<NsDef>>>` and refactor `NameBindings` to be a `NameBinding` for each namespace.
Replace uses of `NameBindings` with `NameBinding` where only one binding is being used (in `NamespaceResult`, `Target,` etc).
Refactor away `resolve_definition_of_name_in_module` and `NameDefinition`, fixing issue #4952.
Change build_reduced_graph.rs so the fields def and module of NsDef are never both Some unless the NsDef represents a duplicate definition (see issue 26421).
Define a newtype `NameBinding` for `Rc<RefCell<Option<NsDef>>>` and refactor `NameBindings` to be a `NameBinding` for each namespace.
Replace uses of `NameBindings` with `NameBinding` where only one binding is being used (in `NamespaceResult`, `Target,` etc).
Refactor away `resolve_definition_of_name_in_module` and `NameDefinition`.
This commit stabilizes and deprecates library APIs whose FCP has closed in the
last cycle, specifically:
Stabilized APIs:
* `fs::canonicalize`
* `Path::{metadata, symlink_metadata, canonicalize, read_link, read_dir, exists,
is_file, is_dir}` - all moved to inherent methods from the `PathExt` trait.
* `Formatter::fill`
* `Formatter::width`
* `Formatter::precision`
* `Formatter::sign_plus`
* `Formatter::sign_minus`
* `Formatter::alternate`
* `Formatter::sign_aware_zero_pad`
* `string::ParseError`
* `Utf8Error::valid_up_to`
* `Iterator::{cmp, partial_cmp, eq, ne, lt, le, gt, ge}`
* `<[T]>::split_{first,last}{,_mut}`
* `Condvar::wait_timeout` - note that `wait_timeout_ms` is not yet deprecated
but will be once 1.5 is released.
* `str::{R,}MatchIndices`
* `str::{r,}match_indices`
* `char::from_u32_unchecked`
* `VecDeque::insert`
* `VecDeque::shrink_to_fit`
* `VecDeque::as_slices`
* `VecDeque::as_mut_slices`
* `VecDeque::swap_remove_front` - (renamed from `swap_front_remove`)
* `VecDeque::swap_remove_back` - (renamed from `swap_back_remove`)
* `Vec::resize`
* `str::slice_mut_unchecked`
* `FileTypeExt`
* `FileTypeExt::{is_block_device, is_char_device, is_fifo, is_socket}`
* `BinaryHeap::from` - `from_vec` deprecated in favor of this
* `BinaryHeap::into_vec` - plus a `Into` impl
* `BinaryHeap::into_sorted_vec`
Deprecated APIs
* `slice::ref_slice`
* `slice::mut_ref_slice`
* `iter::{range_inclusive, RangeInclusive}`
* `std::dynamic_lib`
Closes#27706Closes#27725
cc #27726 (align not stabilized yet)
Closes#27734Closes#27737Closes#27742Closes#27743Closes#27772Closes#27774Closes#27777Closes#27781
cc #27788 (a few remaining methods though)
Closes#27790Closes#27793Closes#27796Closes#27810
cc #28147 (not all parts stabilized)
Make sure Name, SyntaxContext and Ident are passed by value
Make sure Idents don't serve as keys (or parts of keys) in maps, Ident comparison is not well defined
Since enums are namespaced now, should we also remove the `Fk` prefixes from `FnKind` and remove the reexport? (The reexport must be removed because otherwise it clashes with glob imports containing `ItemFn`). IMO writing `FnKind::Method` is much clearer than `FkMethod`.
In order to test the validity of identifiers, exposing the name resolution module is necessary. Other changes mostly comprise of exposing modules publicly like parts of save-analysis, so they can be called appropriately.
(This is a second try at #26242. This time I think things should be ok.)
The current algorithm handling import resolutions works sequentially, handling imports in the order they appear in the source file, and blocking/bailing on the first one generating an error/being unresolved.
This can lead to situations where the order of the `use` statements can make the difference between "this code compiles" and "this code fails on an unresolved import" (see #18083 for example). This is especially true when considering glob imports.
This PR changes the behaviour of the algorithm to instead try to resolve all imports in a module. If one fails, it is recorded and the next one is tried (instead of directly giving up). Also, all errors generated are stored (and not reported directly).
The main loop of the algorithms guaranties that the algorithm will always finish: if a round of resolution does not resolve anything new, we are stuck and give up. At this point, the new version of the algorithm will display all errors generated by the last round of resolve. This way we are sure to not silence relevant errors or help messages, but also to not give up too early.
**As a consequence, the import resolution becomes independent of the order in which the `use` statements are written in the source files.** I personally don't see any situations where this could be a problem, but this might need some thought.
I passed `rpass` and `cfail` tests on my computer, and now am compiling a full stage2 compiler to ensure the crates reporting errors in my previous attempts still build correctly. I guess once I have checked it, this will need a crater run?
Fixes#18083.
r? @alexcrichton , cc @nrc @brson
Most errors generated by resolve might be caused by
not-yet-resolved glob imports. This changes the behavior of the
resolve imports algorithms to not fail prematurally on first
error, but instead buffer intermediate errors and report them
only when stuck.
Fixes#18083
- add feature gate
- add basic tests
- adjust parser to eliminate conflict between `const fn` and associated
constants
- allow `const fn` in traits/trait-impls, but forbid later in type check
- correct some merge conflicts
I've been working on improving the diagnostic registration system so that it can:
* Check uniqueness of error codes *across the whole compiler*. The current method using `errorck.py` is prone to failure as it relies on simple text search - I found that it breaks when referencing an error's ident within a string (e.g. `"See also E0303"`).
* Provide JSON output of error metadata, to eventually facilitate HTML output, as well as tracking of which errors need descriptions. The current schema is:
```
<error code>: {
"description": <long description>,
"use_site": {
"filename": <filename where error is used>,
"line": <line in file where error is used>
}
}
```
[Here's][metadata-dump] a pretty-printed sample dump for `librustc`.
One thing to note is that I had to move the diagnostics arrays out of the diagnostics modules. I really wanted to be able to capture error usage information, which only becomes available as a crate is compiled. Hence all invocations of `__build_diagnostics_array!` have been moved to the ends of their respective `lib.rs` files. I tried to avoid moving the array by making a plugin that expands to nothing but couldn't invoke it in item position and gave up on hackily generating a fake item. I also briefly considered using a lint, but it seemed like it would impossible to get access to the data stored in the thread-local storage.
The next step will be to generate a web page that lists each error with its rendered description and use site. Simple mapping and filtering of the metadata files also allows us to work out which error numbers are absent, which errors are unused and which need descriptions.
[metadata-dump]: https://gist.github.com/michaelsproul/3246846ff1bea71bd049
PR #24242 added the ability to the compiler to directly give suggestions about
how to modify code to fix an error. The new errors look like this:
foobar.rs:5:12: 5:25 error: expected a path on the left-hand side of `+`,
not `&'static Copy` [E0178]
foobar.rs:5 let x: &'static Copy + 'static;
^~~~~~~~~~~~~
foobar.rs:5:12: 5:35 help: try adding parentheses (per RFC 438):
foobar.rs: let x: &'static (Copy + 'static);
foobar.rs:2:13: 2:23 error: cast to unsized type: `&_` as `core::marker::Copy`
foobar.rs:2 let x = &1 as Copy;
^~~~~~~~~~
foobar.rs:2:19: 2:23 help: try casting to a reference instead:
foobar.rs: let x = &1 as &Copy;
foobar.rs:7:24: 7:25 error: expected expression, found `;`
foobar.rs:7 let x = box (1 + 1);
^
foobar.rs:7:13: 7:16 help: try using `box()` instead:
foobar.rs: let x = box() (1 + 1);
This also modifies compiletest to give the ability to directly test suggestions
given by error messages.
This commit removes the `IndexMut` impls on `HashMap` and `BTreeMap`, in
order to future-proof the API against the eventual inclusion of an
`IndexSet` trait.
Ideally, we would eventually be able to support:
```rust
map[owned_key] = val;
map[borrowed_key].mutating_method(arguments);
&mut map[borrowed_key];
```
but to keep the design space as unconstrained as possible, we do not
currently want to support `IndexMut`, in case some other strategy will
eventually be needed.
Code currently using mutating index notation can use `get_mut` instead.
[breaking-change]
Closes#23448
This is one more step towards completing #13231
This series of commits add support for default trait implementations. The changes in this PR don't break existing code and they are expected to preserve the existing behavior in the compiler as far as built-in bounds checks go.
The PR adds negative implementations of `Send`/`Sync` for some types and it removes the special cases for `Send`/`Sync` during the trait obligations checks. That is, it now fully relies on the traits check rather than lang items.
Once this patch lands and a new snapshot is created, it'll be possible to add default impls for `Send` and `Sync` and remove entirely the use of `BuiltinBound::{BoundSend,BoundSync}` for positive implementations as well.
This PR also removes the restriction on negative implementations. That is, it is now possible to add negative implementations for traits other than `Send`/`Sync`
This commit is an implementation of [RFC 823][rfc] which is another pass over
the `std::hash` module for stabilization. The contents of the module were not
entirely marked stable, but some portions which remained quite similar to the
previous incarnation are now marked `#[stable]`. Specifically:
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0823-hash-simplification.md
* `std::hash` is now stable (the name)
* `Hash` is now stable
* `Hash::hash` is now stable
* `Hasher` is now stable
* `SipHasher` is now stable
* `SipHasher::new` and `new_with_keys` are now stable
* `Hasher for SipHasher` is now stable
* Many `Hash` implementations are now stable
All other portions of the `hash` module remain `#[unstable]` as they are less
commonly used and were recently redesigned.
This commit is a breaking change due to the modifications to the `std::hash` API
and more details can be found on the [RFC][rfc].
Closes#22467
[breaking-change]
This commit is an implementation of [RFC 823][rfc] which is another pass over
the `std::hash` module for stabilization. The contents of the module were not
entirely marked stable, but some portions which remained quite similar to the
previous incarnation are now marked `#[stable]`. Specifically:
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0823-hash-simplification.md
* `std::hash` is now stable (the name)
* `Hash` is now stable
* `Hash::hash` is now stable
* `Hasher` is now stable
* `SipHasher` is now stable
* `SipHasher::new` and `new_with_keys` are now stable
* `Hasher for SipHasher` is now stable
* Many `Hash` implementations are now stable
All other portions of the `hash` module remain `#[unstable]` as they are less
commonly used and were recently redesigned.
This commit is a breaking change due to the modifications to the `std::hash` API
and more details can be found on the [RFC][rfc].
Closes#22467
[breaking-change]
Names of structs, enums, traits, type aliases and type parameters (i.e. all identifiers that can be used as full paths in type position) are not allowed to match the names of primitive types.
See #20427 for more information.
This is a minor [breaking-change]
There are a number of holes that the stability lint did not previously cover,
including:
* Types
* Bounds on type parameters on functions and impls
* Where clauses
* Imports
* Patterns (structs and enums)
These holes have all been fixed by overriding the `visit_path` function on the
AST visitor instead of a few specialized cases. This change also necessitated a
few stability changes:
* The `collections::fmt` module is now stable (it was already supposed to be).
* The `thread_local:👿:Key` type is now stable (it was already supposed to
be).
* The `std::rt::{begin_unwind, begin_unwind_fmt}` functions are now stable.
These are required via the `panic!` macro.
* The `std::old_io::stdio::{println, println_args}` functions are now stable.
These are required by the `print!` and `println!` macros.
* The `ops::{FnOnce, FnMut, Fn}` traits are now `#[stable]`. This is required to
make bounds with these traits stable. Note that manual implementations of
these traits are still gated by default, this stability only allows bounds
such as `F: FnOnce()`.
Closes#8962Closes#16360Closes#20327
There are a number of holes that the stability lint did not previously cover,
including:
* Types
* Bounds on type parameters on functions and impls
* Where clauses
* Imports
* Patterns (structs and enums)
These holes have all been fixed by overriding the `visit_path` function on the
AST visitor instead of a few specialized cases. This change also necessitated a
few stability changes:
* The `collections::fmt` module is now stable (it was already supposed to be).
* The `thread_local:👿:Key` type is now stable (it was already supposed to
be).
* The `std::rt::{begin_unwind, begin_unwind_fmt}` functions are now stable.
These are required via the `panic!` macro.
* The `std::old_io::stdio::{println, println_args}` functions are now stable.
These are required by the `print!` and `println!` macros.
* The `ops::{FnOnce, FnMut, Fn}` traits are now `#[stable]`. This is required to
make bounds with these traits stable. Note that manual implementations of
these traits are still gated by default, this stability only allows bounds
such as `F: FnOnce()`.
Additionally, the compiler now has special logic to ignore its own generated
`__test` module for the `--test` harness in terms of stability.
Closes#8962Closes#16360Closes#20327
[breaking-change]
upgrade the inference based on expected type so that it is able to
infer the fn kind in isolation even if the full signature is not
available (and we could perhaps do better still in some cases, such as
extracting just the types of the arguments but not the return value).
This commit is an implementation of [RFC 565][rfc] which is a stabilization of
the `std::fmt` module and the implementations of various formatting traits.
Specifically, the following changes were performed:
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0565-show-string-guidelines.md
* The `Show` trait is now deprecated, it was renamed to `Debug`
* The `String` trait is now deprecated, it was renamed to `Display`
* Many `Debug` and `Display` implementations were audited in accordance with the
RFC and audited implementations now have the `#[stable]` attribute
* Integers and floats no longer print a suffix
* Smart pointers no longer print details that they are a smart pointer
* Paths with `Debug` are now quoted and escape characters
* The `unwrap` methods on `Result` now require `Display` instead of `Debug`
* The `Error` trait no longer has a `detail` method and now requires that
`Display` must be implemented. With the loss of `String`, this has moved into
libcore.
* `impl<E: Error> FromError<E> for Box<Error>` now exists
* `derive(Show)` has been renamed to `derive(Debug)`. This is not currently
warned about due to warnings being emitted on stage1+
While backwards compatibility is attempted to be maintained with a blanket
implementation of `Display` for the old `String` trait (and the same for
`Show`/`Debug`) this is still a breaking change due to primitives no longer
implementing `String` as well as modifications such as `unwrap` and the `Error`
trait. Most code is fairly straightforward to update with a rename or tweaks of
method calls.
[breaking-change]
Closes#21436
This commit modifies resolve to prevent conflicts with typedef names in the same
method that conflits are prevented with enum names. This is a breaking change
due to the differing semantics in resolve, and any errors generated on behalf of
this change require that a conflicting typedef, module, or structure to be
renamed so they do not conflict.
[breaking-change]
Closes#6936
In accordance with [collections reform part 2][rfc] this macro has been moved to
an external [bitflags crate][crate] which is [available though
crates.io][cratesio]. Inside the standard distribution the macro has been moved
to a crate called `rustc_bitflags` for current users to continue using.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0509-collections-reform-part-2.md
[crate]: https://github.com/rust-lang/bitflags
[cratesio]: http://crates.io/crates/bitflags
The major user of `bitflags!` in terms of a public-facing possibly-stable API
today is the `FilePermissions` structure inside of `std::io`. This user,
however, will likely no longer use `bitflags!` after I/O reform has landed. To
prevent breaking APIs today, this structure remains as-is.
Current users of the `bitflags!` macro should add this to their `Cargo.toml`:
bitflags = "0.1"
and this to their crate root:
#[macro_use] extern crate bitflags;
Due to the removal of a public macro, this is a:
[breaking-change]
This gets rid of the 'experimental' level, removes the non-staged_api
case (i.e. stability levels for out-of-tree crates), and lets the
staged_api attributes use 'unstable' and 'deprecated' lints.
This makes the transition period to the full feature staging design
a bit nicer.
This removes the needlessly constricting bound on `intrinsics::type_Id` and `TypeId::of`. Also fixes an ICE where using bounds on type parameters in extern blocks fails to resolve the used traits.
This bound is probably unintentional and is unnecessarily
constricting.
To facilitate this change, it was also necessary to modify
resolve to recurse on and resolve type parameters in extern { }
blocks. This fixes an ICE when using bounds on type parameters
during the declaration of intrinsics.
This also adds tests for TypeId on both Sized and Unsized
tests as well as a test for using type parameters and bounds
in extern { } blocks.
This partially implements the feature staging described in the
[release channel RFC][rc]. It does not yet fully conform to the RFC as
written, but does accomplish its goals sufficiently for the 1.0 alpha
release.
It has three primary user-visible effects:
* On the nightly channel, use of unstable APIs generates a warning.
* On the beta channel, use of unstable APIs generates a warning.
* On the beta channel, use of feature gates generates a warning.
Code that does not trigger these warnings is considered 'stable',
modulo pre-1.0 bugs.
Disabling the warnings for unstable APIs continues to be done in the
existing (i.e. old) style, via `#[allow(...)]`, not that specified in
the RFC. I deem this marginally acceptable since any code that must do
this is not using the stable dialect of Rust.
Use of feature gates is itself gated with the new 'unstable_features'
lint, on nightly set to 'allow', and on beta 'warn'.
The attribute scheme used here corresponds to an older version of the
RFC, with the `#[staged_api]` crate attribute toggling the staging
behavior of the stability attributes, but the user impact is only
in-tree so I'm not concerned about having to make design changes later
(and I may ultimately prefer the scheme here after all, with the
`#[staged_api]` crate attribute).
Since the Rust codebase itself makes use of unstable features the
compiler and build system to a midly elaborate dance to allow it to
bootstrap while disobeying these lints (which would otherwise be
errors because Rust builds with `-D warnings`).
This patch includes one significant hack that causes a
regression. Because the `format_args!` macro emits calls to unstable
APIs it would trigger the lint. I added a hack to the lint to make it
not trigger, but this in turn causes arguments to `println!` not to be
checked for feature gates. I don't presently understand macro
expansion well enough to fix. This is bug #20661.
Closes#16678
[rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
There's been some debate over the precise form that these APIs should take, and
they've undergone some changes recently, so these APIs are going to be left
unstable for now to be fleshed out during the next release cycle.
fmt::Show is for debugging, and can and should be implemented for
all public types. This trait is used with `{:?}` syntax. There still
exists #[derive(Show)].
fmt::String is for types that faithfully be represented as a String.
Because of this, there is no way to derive fmt::String, all
implementations must be purposeful. It is used by the default format
syntax, `{}`.
This will break most instances of `{}`, since that now requires the type
to impl fmt::String. In most cases, replacing `{}` with `{:?}` is the
correct fix. Types that were being printed specifically for users should
receive a fmt::String implementation to fix this.
Part of #20013
[breaking-change]