The checks removed here caused a small perf regression:
https://github.com/rust-lang/rust/pull/88824#issuecomment-932664761
Since the attribute is currently only applied to traits, I don't think
it's worth keeping the additional checks for now.
If/when we decide to apply the attribute somewhere else, we can
(partially) revert this and evaluate if the perf impact is acceptable.
Implement `#[must_not_suspend]`
implements #83310
Some notes on the impl:
1. The code that searches for the attribute on the ADT is basically copied from the `must_use` lint. It's not shared, as the logic did diverge
2. The RFC does specify that the attribute can be placed on fn's (and fn-like objects), like `must_use`. I think this is a direct copy from the `must_use` reference definition. This implementation does NOT support this, as I felt that ADT's (+ `impl Trait` + `dyn Trait`) cover the usecase's people actually want on the RFC, and adding an imp for the fn call case would be significantly harder. The `must_use` impl can do a single check at fn call stmt time, but `must_not_suspend` would need to answer the question: "for some value X with type T, find any fn call that COULD have produced this value". That would require significant changes to `generator_interior.rs`, and I would need mentorship on that. `@eholk` and I are discussing it.
3. `@estebank` do you know a way I can make the user-provided `reason` note pop out? right now it seems quite hidden
Also, I am not sure if we should run perf on this
r? `@nikomatsakis`
Migrate in-tree crates to 2021
This replaces #89075 (cherry picking some of the commits from there), and closes#88637 and fixes#89074.
It excludes a migration of the library crates for now (see tidy diff) because we have some pending bugs around macro spans to fix there.
I instrumented bootstrap during the migration to make sure all crates moved from 2018 to 2021 had the compatibility warnings applied first.
Originally, the intent was to support cargo fix --edition within bootstrap, but this proved fairly difficult to pull off. We'd need to architect the check functionality to support running cargo check and cargo fix within the same x.py invocation, and only resetting sysroots on check. Further, it was found that cargo fix doesn't behave too well with "not quite workspaces", such as Clippy which has several crates. Bootstrap runs with --manifest-path ... for all the tools, and this makes cargo fix only attempt migration for that crate. We can't use e.g. --workspace due to needing to maintain sysroots for different phases of compilation appropriately.
It is recommended to skip the mass migration of Cargo.toml's to 2021 for review purposes; you can also use `git diff d6cd2c6c87 -I'^edition = .20...$'` to ignore the edition = 2018/21 lines in the diff.
Gather module items after lowering.
This avoids having a non-local analysis inside lowering.
By implementing `hir_module_items` using a visitor, we make sure that iterations and visitors are consistent.
If #![feature] is used outside the nightly channel for only lib
features, the check will be delayed to the stability pass after
parsing. This is done so that appropriate help messages can be shown if
the #![feature] has been used needlessly
Avoid invoking the hir_crate query to traverse the HIR
Walking the HIR tree is done using the `hir_crate` query. However, this is unnecessary, since `hir_owner(CRATE_DEF_ID)` provides the same information. Since depending on `hir_crate` forces dependents to always be executed, this leads to unnecessary work.
By splitting HIR and attributes visits, we can avoid an edge to `hir_crate` when trying to visit the HIR tree.
Provide `layout_of` automatically (given tcx + param_env + error handling).
After #88337, there's no longer any uses of `LayoutOf` within `rustc_target` itself, so I realized I could move the trait to `rustc_middle::ty::layout` and redesign it a bit.
This is similar to #88338 (and supersedes it), but at no ergonomic loss, since there's no funky `C: LayoutOf<Ty = Ty>` -> `Ty: TyAbiInterface<C>` generic `impl` chain, and each `LayoutOf` still corresponds to one `impl` (of `LayoutOfHelpers`) for the specific context.
After this PR, this is what's needed to get `trait LayoutOf` (with the `layout_of` method) implemented on some context type:
* `TyCtxt`, via `HasTyCtxt`
* `ParamEnv`, via `HasParamEnv`
* a way to transform `LayoutError`s into the desired error type
* an error type of `!` can be paired with having `cx.layout_of(...)` return `TyAndLayout` *without* `Result<...>` around it, such as used by codegen
* this is done through a new `LayoutOfHelpers` trait (and so is specifying the type of `cx.layout_of(...)`)
When going through this path (and not bypassing it with a manual `impl` of `LayoutOf`), the end result is that only the error case can be customized, the query itself and the success paths are guaranteed to be uniform.
(**EDIT**: just noticed that because of the supertrait relationship, you cannot actually implement `LayoutOf` yourself, the blanket `impl` fully covers all possible context types that could ever implement it)
Part of the motivation for this shape of API is that I've been working on querifying `FnAbi::of_*`, and what I want/need to introduce for that looks a lot like the setup in this PR - in particular, it's harder to express the `FnAbi` methods in `rustc_target`, since they're much more tied to `rustc` concepts.
r? `@nagisa` cc `@oli-obk` `@bjorn3`
MIR lowering for `if let` expressions is now more complicated now that
`if let` exists in HIR. This PR adds a scope for the variables bound in
an `if let` expression and then uses an approach similar to how we
handle loops to ensure that we reliably drop the correct variables.
Emit specific warning to clarify that `#[no_mangle]` should not be applied on foreign statics or functions
Foreign statics and foreign functions should not have `#[no_mangle]` applied, as it does nothing to the name and has some extra hidden behavior that is normally unwanted. There was an existing warning for this, but it says the attribute is only allowed on "statics or functions", which to the user can be confusing.
This PR adds a specific version of the unused `#[no_mangle]` warning that explains that the target is a *foreign* static or function and that they do not need the attribute.
Fixes#78989
rustc_target: `TyAndLayout::field` should never error.
This refactor (making `TyAndLayout::field` return `TyAndLayout` without any `Result` around it) is based on a simple observation, regarding `TyAndLayout::field`:
If `cx.layout_of(ty)` succeeds (for some `cx` and `ty`), then `.field(cx, i)` on the resulting `TyAndLayout` should *always* succeed in computing `cx.layout_of(field_ty)` (where `field_ty` is the type of the `i`th field of `ty`).
The reason for this is that no matter which field is chosen, `cx.layout_of(field_ty)` *will have already been computed*, as part of computing `cx.layout_of(ty)`, as we cannot determine the layout of *any* type without considering the layouts of *all* of its fields.
And so it should be fine to turn any errors into ICEs, since they likely indicate a `cx` mismatch, or some other edge case that is due to a compiler bug (as opposed to ever being an user-facing error).
<hr/>
Each commit should probably be reviewed separately, though note that there's some `where` clauses (in `rustc_target::abi::call::*`) that change in most commits.
cc `@nagisa` `@oli-obk`
Improve detection of generics on lang items
Adds detection for the required generics for all lang items. Many lang items require an exact or minimum amount of generic arguments and if they don't exist, the compiler will ICE. This does not add any additional validation about bounds on generics or any other lang item restrictions.
Fixes one of the ICEs in #87573
cc `@FabianWolff`
Improve liveness analysis for generators
Liveness analysis for generators assumes that execution always continues
normally after a yield point, not accounting for the fact that generator
could be dropped before completion.
If generators captures any variables by reference, those variables could
be used within a generator, or when the generator completes, but also
after each yield point in the case the generator is dropped.
Account for the case when generator is dropped after yielding, but
before running to the completion. This effectively considers all
variables captured by reference to be used after a yield point.
Fixes#84292.
Liveness analysis for generators assumes that execution always continues
normally after a yield point, not accounting for the fact that generator
could be dropped before completion.
If generators captures any variables by reference, those variables could
be used within a generator, or when the generator completes, but also
after each yield point in the case the generator is dropped.
Account for the case when generator is dropped after yielding, but
before running to the completion. This effectively considers all
variables captured by reference to be used after a yield point.
Remove `Session.used_attrs` and move logic to `CheckAttrVisitor`
Instead of updating global state to mark attributes as used,
we now explicitly emit a warning when an attribute is used in
an unsupported position. As a side effect, we are to emit more
detailed warning messages (instead of just a generic "unused" message).
`Session.check_name` is removed, since its only purpose was to mark
the attribute as used. All of the callers are modified to use
`Attribute.has_name`
Additionally, `AttributeType::AssumedUsed` is removed - an 'assumed
used' attribute is implemented by simply not performing any checks
in `CheckAttrVisitor` for a particular attribute.
We no longer emit unused attribute warnings for the `#[rustc_dummy]`
attribute - it's an internal attribute used for tests, so it doesn't
mark sense to treat it as 'unused'.
With this commit, a large source of global untracked state is removed.
Warn about unreachable code following an expression with an uninhabited type
This pull request fixes#85071. The issue is that liveness analysis currently is "smarter" than reachability analysis when it comes to detecting uninhabited types: Unreachable code is detected during type checking, where full type information is not yet available. Therefore, the check for type inhabitedness is quite crude:
fc81ad22c4/compiler/rustc_typeck/src/check/expr.rs (L202-L205)
i.e. it only checks for `!`, but not other, non-trivially uninhabited types, such as empty enums, structs containing an uninhabited type, etc. By contrast, liveness analysis, which runs after type checking, can benefit from the more sophisticated `tcx.is_ty_uninhabited_from()`:
fc81ad22c4/compiler/rustc_passes/src/liveness.rs (L981)fc81ad22c4/compiler/rustc_passes/src/liveness.rs (L996)
This can lead to confusing warnings when a variable is reported as unused, but the use of the variable is not reported as unreachable. For instance:
```rust
enum Foo {}
fn f() -> Foo {todo!()}
fn main() {
let x = f();
let _ = x;
}
```
currently leads to
```
warning: unused variable: `x`
--> t1.rs:5:9
|
5 | let x = f();
| ^ help: if this is intentional, prefix it with an underscore: `_x`
|
= note: `#[warn(unused_variables)]` on by default
warning: 1 warning emitted
```
which is confusing, because `x` _appears_ to be used in line 6. With my changes, I get:
```
warning: unreachable expression
--> t1.rs:6:13
|
5 | let x = f();
| --- any code following this expression is unreachable
6 | let _ = x;
| ^ unreachable expression
|
= note: `#[warn(unreachable_code)]` on by default
note: this expression has type `Foo`, which is uninhabited
--> t1.rs:5:13
|
5 | let x = f();
| ^^^
warning: unused variable: `x`
--> t1.rs:5:9
|
5 | let x = f();
| ^ help: if this is intentional, prefix it with an underscore: `_x`
|
= note: `#[warn(unused_variables)]` on by default
warning: 2 warnings emitted
```
My implementation is slightly inelegant because unreachable code warnings can now be issued in two different places (during type checking and during liveness analysis), but I think it is the solution with the least amount of unnecessary code duplication, given that the new warning integrates nicely with liveness analysis, where unreachable code is already implicitly detected for the purpose of finding unused variables.
Instead of updating global state to mark attributes as used,
we now explicitly emit a warning when an attribute is used in
an unsupported position. As a side effect, we are to emit more
detailed warning messages (instead of just a generic "unused" message).
`Session.check_name` is removed, since its only purpose was to mark
the attribute as used. All of the callers are modified to use
`Attribute.has_name`
Additionally, `AttributeType::AssumedUsed` is removed - an 'assumed
used' attribute is implemented by simply not performing any checks
in `CheckAttrVisitor` for a particular attribute.
We no longer emit unused attribute warnings for the `#[rustc_dummy]`
attribute - it's an internal attribute used for tests, so it doesn't
mark sense to treat it as 'unused'.
With this commit, a large source of global untracked state is removed.
Add future-incompat lint for `doc(primitive)`
## What is `doc(primitive)`?
`doc(primitive)` is an attribute recognized by rustdoc which adds documentation for the built-in primitive types, such as `usize` and `()`. It has been stable since Rust 1.0.
## Why change anything?
`doc(primitive)` is useless for anyone outside the standard library. Since rustdoc provides no way to combine the documentation on two different primitive items, you can only replace the docs, and since the standard library already provides extensive documentation there is no reason to do so.
While fixing rustdoc's handling of primitive items (https://github.com/rust-lang/rust/pull/87073) I discovered that even rustdoc's existing handling of primitive items was broken if you had more than two crates using it (it would pick randomly between them). That meant both:
- Keeping rustdoc's existing treatment was nigh-impossible, because it was random.
- doc(primitive) was even more useless than it would otherwise be.
The only use-case for this outside the standard library is for no-std libraries which want to link to primitives (https://github.com/rust-lang/rust/issues/73423) which is being fixed in https://github.com/rust-lang/rust/pull/87073.
https://github.com/rust-lang/rust/pull/87073 makes various breaking changes to `doc(primitive)` (breaking in the sense that they change the semantics, not in that they cause code to fail to compile). It's not possible to avoid these and still fix rustdoc's issues.
## What can we do about it?
As shown by the crater run (https://github.com/rust-lang/rust/pull/87050#issuecomment-886166706), no one is actually using doc(primitive), there wasn't a single true regression in the whole run. We can either:
1. Feature gate it completely, breaking anyone who crater missed. They can easily fix the breakage just by removing the attribute.
2. add it to the `INVALID_DOC_ATTRIBUTES` future-incompat lint, and at the same time make it a no-op unless you add a feature gate. That would mean rustdoc has to look at the features of dependent crates, because it needs to know where primitives are defined in order to link to them.
3. add it to `INVALID_DOC_ATTRIBUTES`, but still use it to determine where primitives come from
4. do nothing; the behavior will silently change in https://github.com/rust-lang/rust/pull/87073.
My preference is for 2, but I would also be happy with 1 or 3. I don't think we should silently change the behavior.
This PR currently implements 3.
Move naked function ABI check to its own lint
This check was previously categorized under the lint named
`UNSUPPORTED_NAKED_FUNCTIONS`. That lint is future incompatible and will
be turned into an error in a future release. However, as defined in the
Constrained Naked Functions RFC, this check should only be a warning.
This is because it is possible for a naked function to be implemented in
such a way that it does not break even the undefined ABI. For example, a
`jmp` to a `const`.
Therefore, this patch defines a new lint named
`UNDEFINED_NAKED_FUNCTION_ABI` which contains just this single check.
Unlike `UNSUPPORTED_NAKED_FUNCTIONS`, `UNDEFINED_NAKED_FUNCTION_ABI`
will not be converted to an error in the future.
rust-lang/rfcs#2774rust-lang/rfcs#2972
In most calling conventions, accessing function parameters may require
stack access. However, naked functions have no assembly prelude to set
up stack access. This is why naked functions may only contain a single
`asm!()` block. All parameter access is done inside the `asm!()` block,
so we cannot validate the liveness of the input parameters. Therefore,
we should disable the lint for naked functions.
rust-lang/rfcs#2774rust-lang/rfcs#2972
This check was previously categorized under the lint named
`UNSUPPORTED_NAKED_FUNCTIONS`. That lint is future incompatible and will
be turned into an error in a future release. However, as defined in the
Constrained Naked Functions RFC, this check should only be a warning.
This is because it is possible for a naked function to be implemented in
such a way that it does not break even the undefined ABI. For example, a
`jmp` to a `const`.
Therefore, this patch defines a new lint named
`UNDEFINED_NAKED_FUNCTION_ABI` which contains just this single check.
Unlike `UNSUPPORTED_NAKED_FUNCTIONS`, `UNDEFINED_NAKED_FUNCTION_ABI`
will not be converted to an error in the future.
rust-lang/rfcs#2774rust-lang/rfcs#2972
rustc: Replace `HirId`s with `LocalDefId`s in `AccessLevels` tables
and passes using those tables - primarily privacy checking, stability checking and dead code checking.
All these passes work with definitions rather than with arbitrary HIR nodes.
r? `@cjgillot`
cc `@lambinoo` (#87487)
rfc3052 followup: Remove authors field from Cargo manifests
Since RFC 3052 soft deprecated the authors field, hiding it from
crates.io, docs.rs, and making Cargo not add it by default, and it is
not generally up to date/useful information for contributors, we may as well
remove it from crates in this repo.
Since RFC 3052 soft deprecated the authors field anyway, hiding it from
crates.io, docs.rs, and making Cargo not add it by default, and it is
not generally up to date/useful information, we should remove it from
crates in this repo.
Checking that function is const if marked with rustc_const_unstable
Fixes#69630
This one is still missing tests to check the behavior but I checked by hand and it seemed to work.
I would not mind some direction for writing those unit tests!
Use diagnostic items instead of lang items for rfc2229 migrations
This PR removes the `Send`, `UnwindSafe` and `RefUnwindSafe` lang items introduced in https://github.com/rust-lang/rust/pull/84730, and uses diagnostic items instead to check for `Send`, `UnwindSafe` and `RefUnwindSafe` traits for RFC2229 migrations.
r? ```@nikomatsakis```
remove trailing newline
fix: test with attribute but missing const
Update compiler/rustc_passes/src/stability.rs
Co-authored-by: Léo Lanteri Thauvin <leseulartichaut@gmail.com>
Add test for extern functions
fix: using span_help instead of span_suggestion
add test for some ABIs + fmt fix
Update compiler/rustc_passes/src/stability.rs
Co-authored-by: Léo Lanteri Thauvin <leseulartichaut@gmail.com>
Refractor and add test for `impl const`
Add test to make sure no output + cleanup condition
-----------------------------
remove stdcall test, failing CI test
C abi is already tested in this, so it is not that useful to test another one.
The tested code is blind to which specific ABI for now, as long as it's not an intrinsic one
deny using default function in impl const Trait
Fixes#79450.
I don't know if my implementation is correct:
- The check is in `rustc_passes::check_const`, should I put it somewhere else instead?
- Is my approach (to checking the impl) optimal? It works for the current tests, but it might have some issues or there might be a better way of doing this.
Fix ICE when `main` is declared in an `extern` block
Changes in #84401 to implement `imported_main` changed how the crate entry point is found, and a declared `main` in an `extern` block was detected erroneously. This was causing the ICE described in #86110.
This PR adds a check for this case and emits an error instead. Previously a `main` declaration in an `extern` block was not detected as an entry point at all, so emitting an error shouldn't break anything that worked previously. In 1.52.1 stable this is demonstrated, with a `` `main` function not found`` error.
Fixes#86110
Remove unused dependencies from compiler crates
Various compiler crates have dependencies that they don't appear to use. I used some scripting to detect such dependencies, filtered them based on some manual review, and removed those that do indeed appear to be entirely unused.
Remove unused feature gates
The first commit removes a usage of a feature gate, but I don't expect it to be controversial as the feature gate was only used to workaround a limitation of rust in the past. (closures never being `Clone`)
The second commit uses `#[allow_internal_unstable]` to avoid leaking the `trusted_step` feature gate usage from inside the index newtype macro. It didn't work for the `min_specialization` feature gate though.
The third commit removes (almost) all feature gates from the compiler that weren't used anyway.
Report an error if a lang item has the wrong number of generic arguments
This pull request fixes#83893. The issue is that the lang item code currently checks whether the lang item has the correct item kind (e.g. a `#[lang="add"]` has to be a trait), but not whether the item has the correct number of generic arguments.
This can lead to an "index out of bounds" ICE when the compiler tries to create more substitutions than there are suitable types available (if the lang item was declared with too many generic arguments).
For instance, here is a reduced ("reduced" in the sense that it does not trigger additional errors) version of the example given in #83893:
```rust
#![feature(lang_items,no_core)]
#![no_core]
#![crate_type="lib"]
#[lang = "sized"]
trait MySized {}
#[lang = "add"]
trait MyAdd<'a, T> {}
fn ice() {
let r = 5;
let a = 6;
r + a
}
```
On current nightly, this immediately causes an ICE without any warnings or errors emitted. With the changes in this PR, however, I get no ICE and two errors:
```
error[E0718]: `add` language item must be applied to a trait with 1 generic argument
--> pr-ex.rs:8:1
|
8 | #[lang = "add"]
| ^^^^^^^^^^^^^^^
9 | trait MyAdd<'a, T> {}
| ------- this trait has 2 generic arguments, not 1
error[E0369]: cannot add `{integer}` to `{integer}`
--> pr-ex.rs:14:7
|
14 | r + a
| - ^ - {integer}
| |
| {integer}
error: aborting due to 2 previous errors
Some errors have detailed explanations: E0369, E0718.
For more information about an error, try `rustc --explain E0369`.
```
Remove CrateNum parameter for queries that only work on local crate
The pervasive `CrateNum` parameter is a remnant of the multi-crate rustc idea.
Using `()` as query key in those cases avoids having to worry about the validity of the query key.
Remove support for floating-point constants in asm!
Floating-point constants aren't very useful anyways and this simplifies
the code since the type check can now be done in typeck.
cc `@rust-lang/wg-inline-asm`
r? `@nagisa`
Reachable statics have reachable initializers
Static initializer can read other statics. Initializers are evaluated at
compile time, and so their content could become inlined into another
crate. Ensure that initializers of reachable statics are also reachable.
Previously, when an item incorrectly considered to be unreachable was
reached from another crate an attempt would be made to codegen it. The
attempt could fail with an ICE (in the case MIR wasn't available to do
so) in some circumstances the attempt could also succeed resulting in
a local codegen of non-local items, including static ones.
Fixes#84455.
Fix `--remap-path-prefix` not correctly remapping `rust-src` component paths and unify handling of path mapping with virtualized paths
This PR fixes#73167 ("Binaries end up containing path to the rust-src component despite `--remap-path-prefix`") by preventing real local filesystem paths from reaching compilation output if the path is supposed to be remapped.
`RealFileName::Named` introduced in #72767 is now renamed as `LocalPath`, because this variant wraps a (most likely) valid local filesystem path.
`RealFileName::Devirtualized` is renamed as `Remapped` to be used for remapped path from a real path via `--remap-path-prefix` argument, as well as real path inferred from a virtualized (during compiler bootstrapping) `/rustc/...` path. The `local_path` field is now an `Option<PathBuf>`, as it will be set to `None` before serialisation, so it never reaches any build output. Attempting to serialise a non-`None` `local_path` will cause an assertion faliure.
When a path is remapped, a `RealFileName::Remapped` variant is created. The original path is preserved in `local_path` field and the remapped path is saved in `virtual_name` field. Previously, the `local_path` is directly modified which goes against its purpose of "suitable for reading from the file system on the local host".
`rustc_span::SourceFile`'s fields `unmapped_path` (introduced by #44940) and `name_was_remapped` (introduced by #41508 when `--remap-path-prefix` feature originally added) are removed, as these two pieces of information can be inferred from the `name` field: if it's anything other than a `FileName::Real(_)`, or if it is a `FileName::Real(RealFileName::LocalPath(_))`, then clearly `name_was_remapped` would've been false and `unmapped_path` would've been `None`. If it is a `FileName::Real(RealFileName::Remapped{local_path, virtual_name})`, then `name_was_remapped` would've been true and `unmapped_path` would've been `Some(local_path)`.
cc `@eddyb` who implemented `/rustc/...` path devirtualisation
Fix typo in report_unsed_assign
The function was called `report_unsed_assign`, which I assume is a typo, considering the rest of the file.
This replaces `report_unsed_assign` with `report_unused_assign`.
Static initializer can read other statics. Initializers are evaluated at
compile time, and so their content could become inlined into another
crate. Ensure that initializers of reachable statics are also reachable.
Previously, when an item incorrectly considered to be unreachable was
reached from another crate an attempt would be made to codegen it. The
attempt could fail with an ICE (in the case MIR wasn't available to do
so) in some circumstances the attempt could also succeed resulting in
a local codegen of non-local items, including static ones.
further split up const_fn feature flag
This continues the work on splitting up `const_fn` into separate feature flags:
* `const_fn_trait_bound` for `const fn` with trait bounds
* `const_fn_unsize` for unsizing coercions in `const fn` (looks like only `dyn` unsizing is still guarded here)
I don't know if there are even any things left that `const_fn` guards... at least libcore and liballoc do not need it any more.
`@oli-obk` are you currently able to do reviews?
Match against attribute name when validating attributes
Extract attribute name once and match it against symbols that are being
validated, instead of using `Session::check_name` for each symbol
individually.
Assume that all validated attributes are used, instead of marking them
as such, since the attribute check should be exhaustive.
Extract attribute name once and match it against symbols that are being
validated, instead of using `Session::check_name` for each symbol
individually.
Assume that all validated attributes are used, instead of marking them
as such, since the attribute check should be exhaustive.
Use AnonConst for asm! constants
This replaces the old system which used explicit promotion. See #83169 for more background.
The syntax for `const` operands is still the same as before: `const <expr>`.
Fixes#83169
Because the implementation is heavily based on inline consts, we suffer from the same issues:
- We lose the ability to use expressions derived from generics. See the deleted tests in `src/test/ui/asm/const.rs`.
- We are hitting the same ICEs as inline consts, for example #78174. It is unlikely that we will be able to stabilize this before inline consts are stabilized.