move exposed-provenance APIs into separate feature gate
We have already stated explicitly for all the 'exposed' functions that
> Using this method means that code is *not* following strict provenance rules.
However, they were part of the same feature gate and still described as part of the strict provenance experiment. Unfortunately, their semantics are much less clear and certainly nowhere near stabilization, so in preparation for an attempt to stabilize the strict provenance APIs, I suggest we split the things related to "exposed" into their own feature gate. I also used this opportunity to better explain how Exposed Provenance fits into the larger plan here: this is *one possible candidate* for `as` semantics, but we don't know if it is actually viable, so we can't really promise that it is equivalent to `as`. If it works out we probably want to make `as` equivalent to the 'exposed' APIs; if it doesn't, we will remove them again and try to find some other semantics for `as`.
Add substring API for `OsStr`
This adds a method for taking a substring of an `OsStr`, which in combination with [`OsStr::as_encoded_bytes()`](https://doc.rust-lang.org/std/ffi/struct.OsStr.html#method.as_encoded_bytes) makes it possible to implement most string operations in safe code.
API:
```rust
impl OsStr {
pub fn slice_encoded_bytes<R: ops::RangeBounds<usize>>(&self, range: R) -> &Self;
}
```
Motivation, examples and research at https://github.com/rust-lang/libs-team/issues/306.
Tracking issue: #118485
cc `@epage`
r? libs-api
The `library/std/src/sys_common/net.rs` module is intended to define
common implementations of networking-related APIs across a variety of
platforms that share similar APIs (e.g. Berkeley-style sockets and all).
This module is not included for more fringe targets however such as UEFI
or "unknown" targets to libstd (those classified as `restricted-std`).
Previously the `sys_common/net.rs` file was set up such that an
allow-list indicated it shouldn't be used. This commit inverts the logic
to have an allow-list of when it should be used instead.
The goal of this commit is to make it a bit easier to experiment with a
new Rust target. Currently more esoteric targets are required to get an
exception in this `cfg_if` block to use `crate::sys::net` such as for
unsupported targets. With this inversion of logic only targets which
actually support networking will be listed, where most of those are
lumped under `cfg(unix)`.
Given that this change is likely to cause some breakage for some target
by accident I've attempted to be somewhat robust with this by following
these steps to defining the new predicate for inverted logic.
1. Take all supported targets and filter out all `cfg(unix)` ones as
these should all support `sys_common/net.rs`.
2. Take remaining targets and filter out `cfg(windows)` ones.
3. The remaining dozen-or-so targets were all audited by hand. Mostly
this included `target_os = "hermit"` and `target_os = "solid_asp3"`
which required an allow-list entry, but remaining targets were all
already excluded (didn't use `sys_common/net.rs` so they were left
out.
If this causes breakage it should be relatively easy to fix and I'd be
happy to follow-up with any PRs necessary.
Use `usize::repeat_u8` instead of implementing `repeat_byte` in `memchr.rs`
It's simpler that way and the tricks don't actually make a difference: https://godbolt.org/z/zrvYY1dGx
remove the memcpy-on-equal-ptrs assumption
One of the libc we support, musl, [defines `memcpy` with `restrict` pointers](https://git.musl-libc.org/cgit/musl/tree/src/string/memcpy.c#n5). This in fact matches the definition in the C standard. Calling that `memcpy` with overlapping pointers is clearly UB, who knows what the compiler did when optimizing this `memcpy` -- it certainly assumed source and destination to be disjoint.
Lucky enough, it does not seem like we actually need this assumption that `memcpy(p, p, n)` is always allowed. clang and GCC need it since they use `memcpy` to compile C assignments, but [we use memmove for similar code](https://godbolt.org/z/bcW85WYcM). There are no known cases where LLVM introduces calls to memcpy on equal pointers itself. (And if there were, that would be a soundness bug in rustc due to the musl issue mentioned above.)
This does mean we must make sure to never call the LLVM `memcpy` builtin on equal ranges even though the LangRef says that is allowed. Currently that is the case so we just need to make sure it remains the case. :) Cc `@rust-lang/opsem` `@rust-lang/wg-llvm`
Implement thread parking for xous
This follows the pattern set by [the Windows parker](ddef56d5df/library/std/src/sys/windows/thread_parking.rs) when it uses keyed events. An atomic variable is used to track the state and optimize the fast path, while notifications are send via the ticktime server to block and unblock the thread.
ping `@xobs`
`@rustbot` label +T-libs +A-atomic
r? libs
unify read_to_end and io::copy impls for reading into a Vec
This ports over the initial probe (to avoid allocation) and the dynamic read sizing from the io::copy specialization to the `default_read_to_end` implementation which already had its own optimizations for different cases.
I think it should be a best-of-both now.
suggested by `@a1phyr` in https://github.com/rust-lang/rust/pull/117576#issuecomment-1803408492
Expand in-place iteration specialization to Flatten, FlatMap and ArrayChunks
This enables the following cases to collect in-place:
```rust
let v = vec![[0u8; 4]; 1024]
let v: Vec<_> = v.into_iter().flatten().collect();
let v: Vec<Option<NonZeroUsize>> = vec![NonZeroUsize::new(0); 1024];
let v: Vec<_> = v.into_iter().flatten().collect();
let v = vec![u8; 4096];
let v: Vec<_> = v.into_iter().array_chunks::<4>().collect();
```
Especially the nicheful-option-flattening should be useful in real code.
Fix comments for unsigned non-zero `checked_add`, `saturating_add`
While looking at #118313, I happened to notice that two of the expanded comments appear to be slightly inaccurate.
For these two methods, `other` is an ordinary unsigned integer, so it can be zero.
Since the sum of non-zero and zero is always non-zero, the safety argument holds even when `other` is zero.
Update mod comment
The comment of `ASCII_CASE_MASK` on line 477 is `If 6th bit is set ascii is lower case.` but the original comment of `*self ^ ((self.is_ascii_lowercase() as u8) * ASCII_CASE_MASK)` was `Toggle the fifth bit if this is a lowercase letter`
For these two methods, `other` is an ordinary unsigned integer, so it can be zero.
Since the sum of non-zero and zero is always non-zero, the safety argument
holds even when `other` is zero.
rustdoc: Remove space from fake-variadic fn ptr impls
before: `for fn (T₁, T₂, …, Tₙ) -> Ret`
after: `for fn(T₁, T₂, …, Tₙ) -> Ret`
I don't think we usually have spaces there, so it looks weird.
cc `@notriddle` since you added the space in https://github.com/rust-lang/rust/pull/98180 (or rather, added the feature with a space included).
Non null convenience ops
Based on https://github.com/rust-lang/libs-team/issues/251.
I went through all of the methods on `*mut` and added every method, which does not require additional safety conditions, to `NonNull`. (exceptions: `guaranteed_eq`, `guaranteed_ne`, `with_metadata_of`, it's unclear if they are useful here...)
I'm also not sure what types should the "second pointer parameter" be. `*mut`/`*const` might be more permissible, but given that `NonNull` doesn't coerce to them, it might also be annoying. For now I chose the "use `NonNull` everywhere" path, but I'm not sure it's the correct one...
<sub>I'm eepy, so I probably messed up somewhere while copying...</sub>
cc `@scottmcm`
r? libs-api
Add `debug_assert_nounwind` and convert `assert_unsafe_precondition`
`assert_unsafe_precondition` checks non-CTFE-evaluable conditions in runtime and performs no-op in compile time, while many of its current usage can be checked during const eval.
Fixes error count display is different when there's only one error left
Supersedes #114759
### What did I do?
I did the small change in `rustc_errors` by hand. Then I did the other changes in `/compiler` by hand, those were just find replace on `*.rs` in the workspace. The changes in run-make are find replace for `run-make` in the workspace.
All other changes are blessed using `x test TEST --bless`. I blessed the tests that were blessed in #114759.
### how to review this nightmare
ping bors with an `r+`. You should check that my logic is sound and maybe quickly scroll through the diff, but fully verifying it seems fairly hard to impossible. I did my best to do this correctly.
Thank you `@adrianEffe` for bringing this up and your initial implementation.
cc `@flip1995,` you said you want to do a subtree sync asap
cc `@RalfJung` maybe you want to do a quick subtree sync afterwards as well for Miri
r? `@WaffleLapkin`
Indicate that multiplication in Layout::array cannot overflow
Since https://github.com/rust-lang/rust/pull/113113, we have added a check that skips calling into the allocator at all if `capacity == 0`. The global, default allocator will not actually try to allocate though; it returns a dangling pointer explicitly. However, these two checks are not merged/deduplicated by LLVM and so we're comparing to zero twice whenever vectors are allocated/grown. Probably cheap, but also potentially expensive in code size and seems like an unfortunate miss.
This removes that extra check by telling LLVM that the multiplication as part of Layout::array can't overflow, turning the original non-zero value into a zero value afterwards. In my checks locally this successfully drops the duplicate comparisons.
See https://rust.godbolt.org/z/b6nPP9dcK for a code example.
```rust
pub fn foo(elements: usize) -> Vec<u32> {
Vec::with_capacity(elements)
}
```
r? `@scottmcm` since you touched this in a32305a80f - curious if you have thoughts on doing this / can confirm my model of this being correct.
Use an absolute path to the NUL device
While a bare "NUL" *should* be redirected to the NUL device, especially in this simple case, let's be explicit that we aren't opening a file called "NUL" and instead open it directly.
This will also set a good example for people copying std code.
r? libs
Update windows-bindgen and define `INVALID_HANDLE_VALUE` ourselves
We generate bindings to the Windows API via the `windows-bindgen` crate, which is ultimately what's also used to generate the `windows-sys` and `windows` crates. However, there currently is some custom sauce just for std which makes it a bit different from the vanilla bindings. I would love for us to reduce and eventually remove the differences entirely so that std is using the exact same bindings as everyone else. Maybe in the future we can even just have a normal dependency on `windows-sys`.
This PR removes one of those special things. Our definition of `INVALID_HANDLE_VALUE` relies on an experimental nightly feature for strict provenance, so lets bring that back in house. It also excludes it from the codegen step though that isn't strictly necessary as we override it in any case.
This PR also updates windows-bingen to 0.52.0.
Improve rewind documentation
The persistent use of an internal cursor for readers is expected for buffer data types that aren't read all at once, but for files it leads to the confusing situation where calling `read_to_end` on the same file handle multiple times only returns the contents of the file for the first call. This PR adds a note to the documentation clarifying that in that case, `rewind()` must first be called.
I'm unsure if this is the right location for the docs update. Maybe it should also be duplicated on `File`?
This allows LLVM to optimize comparisons to zero before & after the
multiplication into one, saving on code size and eliminating an (always
true) branch from most Vec allocations.
kmc-solid: I/O safety
Adds the I/O safety API (#87329) for socket file descriptors in [`*-kmc-solid_*`](https://doc.rust-lang.org/nightly/rustc/platform-support/kmc-solid.html) Tier 3 targets. All new public items are gated by the `solid_ext` library feature.
This PR adds the following public types and traits:
std::os::solid::io::AsFd
std::os::solid::io::BorrowedFd
std::os::solid::io::OwnedFd
std::os::solid::prelude::AsFd (re-export)
std::os::solid::prelude::BorrowedFd (re-export)
std::os::solid::prelude::OwnedFd (re-export)
And trait implementations:
From<std::net::TcpListener> for std::os::solid::io::OwnedFd
From<std::net::TcpStream> for std::os::solid::io::OwnedFd
From<std::net::UdpSocket> for std::os::solid::io::OwnedFd
From<std::os::solid::io::OwnedFd> for std::net::TcpListener
From<std::os::solid::io::OwnedFd> for std::net::TcpStream
From<std::os::solid::io::OwnedFd> for std::net::UdpSocket
std::fmt::Debug for std::os::solid::io::BorrowedFd<'_>
std::fmt::Debug for std::os::solid::io::OwnedFd
std::io::IsTerminal for std::os::solid::io::BorrowedFd<'_>
std::io::IsTerminal for std::os::solid::io::OwnedFd
std::os::fd::AsRawFd for std::os::solid::io::BorrowedFd<'_>
std::os::fd::AsRawFd for std::os::solid::io::OwnedFd
std::os::fd::FromRawFd for std::os::solid::io::OwnedFd
std::os::fd::IntoRawFd for std::os::solid::io::OwnedFd
std::os::solid::io::AsFd for &impl std::os::solid::io::AsFd
std::os::solid::io::AsFd for &mut impl std::os::solid::io::AsFd
std::os::solid::io::AsFd for Arc<impl std::os::solid::io::AsFd>
std::os::solid::io::AsFd for Box<impl std::os::solid::io::AsFd>
std::os::solid::io::AsFd for Rc<impl std::os::solid::io::AsFd>
std::os::solid::io::AsFd for std::net::TcpListener
std::os::solid::io::AsFd for std::net::TcpStream
std::os::solid::io::AsFd for std::net::UdpSocket
std::os::solid::io::AsFd for std::os::solid::io::BorrowedFd<'_>
std::os::solid::io::AsFd for std::os::solid::io::OwnedFd
Taking advantage of the above change, this PR also refactors the internal details of `std::sys::solid::net` to match the design of other targets, e.g., by redefining `Socket` as a newtype of `OwnedFd`.
Fix some clippy lints for library/std/src/sys/windows
These issues were shown by running `x clippy` on `library/std` and filtering for `windows/` paths. I think running clippy on the full std would be great but I wanted to start smaller and with something that's hopefully easier to review. It'd be good to eventually run clippy in CI but that's a bigger conversation.
I've created separate commits for each clippy lint fixed (with the commit title set to the lint name) and reviewed the changes myself. Most of the fixes here are trivial.
r? libs