Commit Graph

40452 Commits

Author SHA1 Message Date
Michael Goulet
9989b1b0d5 Use PredicateFilter instead of OnlySelfBounds 2024-10-19 18:02:11 +00:00
Jubilee Young
492760020e llvm: Delete LLVMRustSetComdat 2024-10-19 10:46:10 -07:00
Jubilee Young
45d61b0d26 cg_llvm: Reuse LLVM-C Comdat support
Migrate `llvm::set_comdat` and `llvm::SetUniqueComdat` to LLVM-C FFI.

Note, now we can call `llvm::set_comdat` only when the target actually
supports adding comdat. As this has no convenient LLVM-C API, we
implement this as `TargetOptions::supports_comdat`.

Co-authored-by: Stuart Cook <Zalathar@users.noreply.github.com>
2024-10-19 10:46:10 -07:00
bors
8069f8d17a Auto merge of #131934 - matthiaskrgr:rollup-pd3dwxu, r=matthiaskrgr
Rollup of 8 pull requests

Successful merges:

 - #127462 (std: uefi: Add basic Env variables)
 - #131537 (Fix range misleading field access)
 - #131838 (bootstrap: allow setting `--jobs` in config.toml)
 - #131890 (Update `use` keyword docs to describe precise capturing)
 - #131899 (Mark unexpected variant res suggestion as having placeholders)
 - #131908 (rustdoc: Switch from FxHash to sha256 for static file hashing.)
 - #131916 (small interpreter error cleanup)
 - #131919 (zero-sized accesses are fine on null pointers)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-19 16:46:43 +00:00
Matthias Krüger
0a5d65b25f
Rollup merge of #131916 - RalfJung:interpret-err, r=jieyouxu
small interpreter error cleanup

- Add `InterpretResult::map_err_kind` for the common case of swapping out the error kind (while preserving the backtrace pointing to the original error source)
- Rename `InterpError` -> `InterpErrorKind` to be consistent with the `kind` field name, and make it more clear that this is not the final error type
2024-10-19 17:25:35 +02:00
Matthias Krüger
ff55ec0336
Rollup merge of #131899 - compiler-errors:placeholder, r=lqd
Mark unexpected variant res suggestion as having placeholders

Fixes #131878
2024-10-19 17:25:34 +02:00
Matthias Krüger
a394d4928b
Rollup merge of #131537 - hirschenberger:master, r=compiler-errors
Fix range misleading field access

Fixes #131471 by checking if the range-start is a literal.
2024-10-19 17:25:33 +02:00
Michael Goulet
ad2a649aab Remove unnecessary constness 2024-10-19 10:36:56 -04:00
usamoi
fa478239b1 use tracked_path in rustc_fluent_macro 2024-10-19 22:32:38 +08:00
bors
a2a1206811 Auto merge of #131211 - bjorn3:rust_abi_follow_c_rules, r=nikic,jieyouxu
Return values larger than 2 registers using a return area pointer

LLVM and Cranelift disagree about how to return values that don't fit in the registers designated for return values. LLVM will force the entire return value to be passed by return area pointer, while Cranelift will look at each IR level return value independently and decide to pass it in a register or not, which would result in the return value being passed partially in registers and partially through a return area pointer.

While Cranelift may need to be fixed as the LLVM behavior is generally more correct with respect to the surface language, forcing this behavior in rustc itself makes it easier for other backends to conform to the Rust ABI and for the C ABI rustc already handles this behavior anyway.

In addition LLVM's decision to pass the return value in registers or using a return area pointer depends on how exactly the return type is lowered to an LLVM IR type. For example `Option<u128>` can be lowered as `{ i128, i128 }` in which case the x86_64 backend would use a return area pointer, or it could be passed as `{ i32, i128 }` in which case the x86_64 backend would pass it in registers by taking advantage of an LLVM ABI extension that allows using 3 registers for the x86_64 sysv call conv rather than the officially specified 2 registers.

This adjustment is only necessary for the Rust ABI as for other ABI's the calling convention implementations in rustc_target already ensure any return value which doesn't fit in the available amount of return registers is passed in the right way for the current target.

Helps with https://github.com/rust-lang/rustc_codegen_cranelift/issues/1525
cc https://github.com/bytecodealliance/wasmtime/issues/9250
2024-10-19 14:21:46 +00:00
Ralf Jung
eea74be5c1 interpret errors: add map_err_kind, rename InterpError -> InterpErrorKind 2024-10-19 09:22:38 +02:00
Jubilee Young
62aa8f0740 compiler: Embed consensus in lint::types::improper_ctypes
Extracting this logic into a module makes it easier to write down, and
more importantly, later find, the actual decisions we've made.
2024-10-18 21:59:29 -07:00
Jubilee Young
888efe74a3 cg_llvm: Switch llvm::add_global to &CStr 2024-10-18 17:46:33 -07:00
lcnr
d836d35739 refactor fudge_inference, handle effect vars 2024-10-19 00:41:56 +02:00
Michael Goulet
1617501eea Mark unexpected variant res suggestion as having placeholders 2024-10-18 12:30:27 -04:00
Noratrieb
e78d78868a Allow #[deny(..)] inside #[forbid(..)] as a no-op with a warning
Forbid cannot be overriden. When someome tries to do this anyways,
it results in a hard error. That makes sense.

Except it doesn't, because macros. Macros may reasonably use `#[deny]`
in their expansion to assert
that their expanded code follows the lint. This is doesn't work when the
output gets expanded into a `forbid()` context. This is pretty silly,
since both the macros and the code agree on the lint!

Therefore, we allow `#[deny(..)]`ing a lint that's already forbidden,
keeping the level at forbid.
2024-10-18 18:18:41 +02:00
Falco Hirschenberger
8f2273e518 Fix #131471, range misleading field access
Fixes #131471 by checking if the range-start is a literal.
2024-10-18 17:27:28 +02:00
许杰友 Jieyou Xu (Joe)
765e8c75b0
Rollup merge of #131864 - lrh2000:upcast_reorder, r=WaffleLapkin
Never emit `vptr` for empty/auto traits

Emiting `vptr`s for empty/auto traits is unnecessary (#114942) and causes unsoundness in `trait_upcasting` (#131813). This PR should ensure that we never emit vtables for such traits. See the linked issues for more details.

I'm not sure if I can add tests for the vtable layout. So this PR only adds tests for the soundness hole (i.e., the segmentation fault will disappear after this PR).

Fixes #114942
Fixes #131813

Cc #65991 (tracking issue for `trait_upcasting`)

r? `@WaffleLapkin`  (per https://github.com/rust-lang/rust/issues/131813#issuecomment-2419969745)
2024-10-18 14:52:25 +01:00
许杰友 Jieyou Xu (Joe)
9a664a0a96
Rollup merge of #131874 - heiher:loong-ohos-medium, r=jieyouxu
Default to the medium code model on OpenHarmony LoongArch target

The context for this is #130266: setting the medium code model for the `loongarch64-linux-ohos` target.

r? ```@jieyouxu```
2024-10-18 12:00:54 +01:00
许杰友 Jieyou Xu (Joe)
aae4730c78
Rollup merge of #131802 - compiler-errors:fnonce-coverage, r=Zalathar
Dont ICE when computing coverage of synthetic async closure body

I'm not totally certain if this is *right*, but at least it doesn't ICE.

The issue is that we end up generating two MIR bodies for each async closure, since the `FnOnce` and `Fn`/`FnMut` implementations have different borrowing behavior of their captured variables. They should ideally both contribute to the coverage, since those MIR bodies are (*to the user*) the same code and should have no behavioral differences.

This PR at least suppresses the ICEs, and then I guess worst case we can fix this the right way later.

r? Zalathar or re-roll

Fixes #131190
2024-10-18 12:00:51 +01:00
Michael Goulet
cdbf28af76 Dont ICE when computing coverage of synthetic async closure body 2024-10-18 20:14:02 +11:00
WANG Rui
275ec06900 Default to the medium code model on OpenHarmony LoongArch target
The context for this is #130266: setting the medium code model for the
'loongarch64-linux-ohos' target.
2024-10-18 14:16:51 +08:00
Matthias Krüger
13b398401f
Rollup merge of #131857 - WaffleLapkin:dyn-drop-principal-3, r=compiler-errors
Allow dropping dyn principal

Revival of #126660, which was a revival of #114679. Fixes #126313.

Allows dropping principal when coercing trait objects, e.g. `dyn Debug + Send` -> `dyn Send`.

cc `@compiler-errors` `@Jules-Bertholet`
r? `@lcnr`
2024-10-18 06:59:07 +02:00
Matthias Krüger
02cc3a6da5
Rollup merge of #131743 - tamird:find_commandline_library-tidy, r=lcnr
rustc_metadata: minor tidying

Cleaned up some code while investigating #131720.

See individual commits.
2024-10-18 06:59:05 +02:00
Ruihan Li
781bff0499 Never emit vptr for empty/auto traits 2024-10-18 12:34:56 +08:00
Matthias Krüger
405eb4178e
Rollup merge of #131825 - lcnr:probe-no-more-leak-2, r=compiler-errors
SolverDelegate add assoc type for Infcx

makes writing trait bounds on it a lot nicer going forward.

r? `@compiler-errors`
2024-10-17 20:47:31 +02:00
Matthias Krüger
7dbd92fadd
Rollup merge of #131818 - heiher:loong-instrument-xray, r=jieyouxu
Enable XRay instrumentation for LoongArch Linux targets

Enable XRay instrumentation for `loongarch64-unknown-linux-{gnu, musl, ohos}` targets.
2024-10-17 20:47:30 +02:00
Matthias Krüger
db4cc00ed0
Rollup merge of #131805 - aeubanks:flat, r=durin42
rustc_llvm: Fix flattened CLI args

Fixes string manipulation errors introduced in #130446.
2024-10-17 20:47:30 +02:00
Michael Goulet
e3800a1a04 Allow dropping dyn principal 2024-10-17 20:43:31 +02:00
Tamir Duberstein
94a2be998d
rustc_metadata: reduce repetition 2024-10-17 11:13:28 -04:00
WANG Rui
67ed9fac55 Enable XRay instrumentation for LoongArch Linux targets 2024-10-17 22:35:51 +08:00
Matthias Krüger
c7356559e5
Rollup merge of #131822 - lcnr:typeck-error-reporting, r=jieyouxu
extract `expr_assign_expected_bool_error`

moving diagnostics code out of the happy path makes it a lot easier to read imo
2024-10-17 12:07:23 +02:00
Matthias Krüger
887afd1782
Rollup merge of #131815 - workingjubilee:did-you-mean-is-none-or, r=jieyouxu
compiler: use `is_none_or` where it is clearly better

heuristic was: if it easily allows removing bangs entirely? worth it. if it requires more effort or just moves the bang? not.
2024-10-17 12:07:22 +02:00
Matthias Krüger
c1f370254c
Rollup merge of #131748 - lcnr:typing-mode, r=compiler-errors
cleanup canonical queries

best reviewed commit by commit. adding `CanonicalQueryInput` to stop returning `defining_opaque_types` in query responses is the most involved change here.

r? ``@compiler-errors``
2024-10-17 12:07:21 +02:00
Matthias Krüger
9aee5d98cf
Rollup merge of #131583 - heiher:loong-issue-118053, r=jieyouxu
Setting up indirect access to external data for loongarch64-linux-{musl,ohos}

In issue #118053, the `loongarch64-unknown-linux-gnu` target needs indirection to access external data, and so do the `loongarch64-unknown-linux-musl` and `loongarch64-unknown-linux-ohos` targets.
2024-10-17 12:07:20 +02:00
Matthias Krüger
21c57f5490
Rollup merge of #128391 - cafce25:issue-128390, r=lcnr
Change orphan hint from "only" to "any uncovered type inside..."

Fix #128390
2024-10-17 12:07:19 +02:00
lcnr
c45073ec3e SolverDelegate add assoc type for Infcx 2024-10-17 11:38:40 +02:00
lcnr
02982f23d3 extract expr_assign_expected_bool_error 2024-10-17 11:10:01 +02:00
lcnr
3360c1773a move defining_opaque_types out of Canonical 2024-10-17 10:22:52 +02:00
lcnr
5834ba1ab7 remove Canonical::unchecked_rebind, it's unused 2024-10-17 09:53:27 +02:00
lcnr
f3ce557fcd DropckOutlives to rustc_middle 2024-10-17 09:53:27 +02:00
lcnr
9334d85e69 remove type_op constructors 2024-10-17 09:53:27 +02:00
lcnr
401f9b4e0a ImpliedOutlivesBounds to rustc_middle 2024-10-17 09:53:27 +02:00
Jubilee Young
47cfaa6d87 compiler: use is_none_or where it is clearly better
heuristic was: if it easily allows removing bangs entirely? worth it.
if it requires more effort or just moves the bang? not.
2024-10-16 23:50:13 -07:00
bors
06d261daf6 Auto merge of #129582 - nbdd0121:unwind, r=nnethercote
Make destructors on `extern "C"` frames to be executed

This would make the example in #123231 print "Noisy Drop". I didn't mark this as fixing the issue because the behaviour is yet to be spec'ed.

Tracking:

- https://github.com/rust-lang/rust/issues/74990
2024-10-17 04:34:51 +00:00
Arthur Eubanks
18bbf5f118 clang-format 2024-10-16 21:46:52 +00:00
Arthur Eubanks
6de277c039 rustc_llvm: Fix flattened CLI args
Fixes string manipulation errors introduced in #130446.
2024-10-16 21:26:34 +00:00
bors
798fb83f7d Auto merge of #131797 - matthiaskrgr:rollup-lzpze2k, r=matthiaskrgr
Rollup of 9 pull requests

Successful merges:

 - #130989 (Don't check unsize goal in MIR validation when opaques remain)
 - #131657 (Rustfmt `for<'a> async` correctly)
 - #131691 (Delay ambiguous intra-doc link resolution after `Cache` has been populated)
 - #131730 (Refactor some `core::fmt` macros)
 - #131751 (Rename `can_coerce` to `may_coerce`, and then structurally resolve correctly in the probe)
 - #131753 (Unify `secondary_span` and `swap_secondary_and_primary` args in `note_type_err`)
 - #131776 (Emscripten: Xfail backtrace ui tests)
 - #131777 (Fix trivially_copy_pass_by_ref in stable_mir)
 - #131778 (Fix needless_lifetimes in stable_mir)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-16 20:50:53 +00:00
Matthias Krüger
50e93bc080
Rollup merge of #131778 - practicalrs:fix_needless_lifetimes, r=jieyouxu
Fix needless_lifetimes in stable_mir

Hi,

This PR fixes the following clippy warning

```
warning: the following explicit lifetimes could be elided: 'a
   --> compiler/stable_mir/src/mir/visit.rs:490:6
    |
490 | impl<'a> PlaceRef<'a> {
    |      ^^           ^^
    |
    = help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#needless_lifetimes
    = note: `#[warn(clippy::needless_lifetimes)]` on by default
help: elide the lifetimes
    |
490 - impl<'a> PlaceRef<'a> {
490 + impl PlaceRef<'_> {
    |
```

Best regards,
Michal
2024-10-16 20:15:56 +02:00
Matthias Krüger
ac6353ed43
Rollup merge of #131777 - practicalrs:fix_trivially_copy_pass_by_ref, r=jieyouxu
Fix trivially_copy_pass_by_ref in stable_mir

Hi,

This PR fixes the following clippy warnings

```
warning: this argument (8 byte) is passed by reference, but would be more efficient if passed by value (limit: 8 byte)
    --> compiler/stable_mir/src/mir/body.rs:1042:34
     |
1042 |     fn subslice_ty(ty: Ty, from: &u64, to: &u64, from_end: &bool) -> Result<Ty, Error> {
     |                                  ^^^^ help: consider passing by value instead: `u64`
     |
     = help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#trivially_copy_pass_by_ref
     = note: requested on the command line with `-W clippy::trivially-copy-pass-by-ref`

warning: this argument (8 byte) is passed by reference, but would be more efficient if passed by value (limit: 8 byte)
    --> compiler/stable_mir/src/mir/body.rs:1042:44
     |
1042 |     fn subslice_ty(ty: Ty, from: &u64, to: &u64, from_end: &bool) -> Result<Ty, Error> {
     |                                            ^^^^ help: consider passing by value instead: `u64`
     |
     = help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#trivially_copy_pass_by_ref

warning: this argument (1 byte) is passed by reference, but would be more efficient if passed by value (limit: 8 byte)
    --> compiler/stable_mir/src/mir/body.rs:1042:60
     |
1042 |     fn subslice_ty(ty: Ty, from: &u64, to: &u64, from_end: &bool) -> Result<Ty, Error> {
     |                                                            ^^^^^ help: consider passing by value instead: `bool`
     |
     = help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#trivially_copy_pass_by_ref

```

Best regards,
Michal
2024-10-16 20:15:56 +02:00
Matthias Krüger
80cbc6d40d
Rollup merge of #131753 - compiler-errors:swap-secondary, r=jieyouxu
Unify `secondary_span` and `swap_secondary_and_primary` args in `note_type_err`

Tiny tweak b/c working w `note_type_err` is kinda a mess.
2024-10-16 20:15:55 +02:00
Matthias Krüger
3b8fd5f895
Rollup merge of #131751 - compiler-errors:structurally-resolve, r=lcnr
Rename `can_coerce` to `may_coerce`, and then structurally resolve correctly in the probe

We need to structurally resolve the lhs and rhs of the coercion. Also, renaming the method so it's less ambiguous about what it's doing... the word "may" gives more clear signal that it has false positives imo.

r? lcnr
2024-10-16 20:15:54 +02:00
Matthias Krüger
b6a085a16e
Rollup merge of #130989 - compiler-errors:unsize-opaque, r=estebank
Don't check unsize goal in MIR validation when opaques remain

Similarly to `mir_assign_valid_types`, let's just skip when there are opaques. Fixes #130921.
2024-10-16 20:15:52 +02:00
bors
7342830c05 Auto merge of #131792 - matthiaskrgr:rollup-480nwg4, r=matthiaskrgr
Rollup of 8 pull requests

Successful merges:

 - #130822 (Add `from_ref` and `from_mut` constructors to `core::ptr::NonNull`.)
 - #131381 (Implement edition 2024 match ergonomics restrictions)
 - #131594 (rustdoc: Rename "object safe" to "dyn compatible")
 - #131686 (Add fast-path when computing the default visibility)
 - #131699 (Try to improve error messages involving aliases in the solver)
 - #131757 (Ignore lint-non-snake-case-crate#proc_macro_ on targets without unwind)
 - #131783 (Fix explicit_iter_loop in rustc_serialize)
 - #131788 (Fix mismatched quotation mark)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-16 17:58:25 +00:00
Michael Goulet
99d5f3b280 Stop inverting expectation in normalization errors 2024-10-16 13:44:56 -04:00
Matthias Krüger
75f418fb28
Rollup merge of #131783 - practicalrs:fix_explicit_iter_loop, r=compiler-errors
Fix explicit_iter_loop in rustc_serialize

Hi,

This PR fixes some clippy warnings

```
warning: it is more concise to loop over references to containers instead of using explicit iteration methods
   --> compiler/rustc_serialize/src/serialize.rs:675:18
    |
675 |         for e in self.iter() {
    |                  ^^^^^^^^^^^ help: to write this more concisely, try: `self`
    |
    = help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#explicit_iter_loop

```

Best regards,
Michal
2024-10-16 19:18:33 +02:00
Matthias Krüger
aac91f75e3
Rollup merge of #131699 - compiler-errors:better-errors-for-projections, r=lcnr
Try to improve error messages involving aliases in the solver

1. Treat aliases as rigid only if it may not be defined and it's well formed (i.e. for projections, its trait goal is satisfied).
2. Record goals that are related to alias normalization under a new `GoalKind`, so we can look into them in the `BestObligation` visitor.
3. Try to deduplicate errors due to self types of goals that are un-normalizable aliases.

r? lcnr
2024-10-16 19:18:32 +02:00
Matthias Krüger
2560453256
Rollup merge of #131686 - Urgau:fast-path-vis, r=lqd
Add fast-path when computing the default visibility

This PR adds (or more correctly re-adds the) fast-path when computing the default visibility, by taking advantage of the fact that the "interposable" requested visibility always return the "default" codegen visibility.

Should address the small regression observed in https://github.com/rust-lang/rust/pull/131111#issuecomment-2402273967.

r? `@lqd`
2024-10-16 19:18:31 +02:00
Matthias Krüger
c1ed1f133e
Rollup merge of #131381 - Nadrieril:min-match-ergonomics, r=pnkfelix
Implement edition 2024 match ergonomics restrictions

This implements the minimalest version of [match ergonomics for edition 2024](https://rust-lang.github.io/rfcs/3627-match-ergonomics-2024.html). This minimal version makes it an error to ever reset the default binding mode. The implemented proposal is described precisely [here](https://hackmd.io/zUqs2ISNQ0Wrnxsa9nhD0Q#RFC-3627-nano), where it is called "RFC 3627-nano".

Rules:
- Rule 1C: When the DBM (default binding mode) is not `move` (whether or not behind a reference), writing `mut`, `ref`, or `ref mut` on a binding is an error.
- Rule 2C: Reference patterns can only match against references in the scrutinee when the DBM is `move`.

This minimal version is forward-compatible with the main proposals for match ergonomics 2024: [RFC3627](https://rust-lang.github.io/rfcs/3627-match-ergonomics-2024.html) itself, the alternative [rule 4-early variant](https://rust-lang.github.io/rfcs/3627-match-ergonomics-2024.html), and [others](https://hackmd.io/zUqs2ISNQ0Wrnxsa9nhD0Q). The idea is to give us more time to iron out a final proposal.

This includes a migration lint that desugars any offending pattern into one that doesn't make use of match ergonomics. Such patterns have identical meaning across editions.

This PR insta-stabilizes the proposed behavior onto edition 2024.

r? `@ghost`

Tracking:

- https://github.com/rust-lang/rust/issues/123076
2024-10-16 19:18:30 +02:00
bors
bed75e7c21 Auto merge of #131767 - cuviper:bump-stage0, r=Mark-Simulacrum
Bump bootstrap compiler to 1.83.0-beta.1

https://forge.rust-lang.org/release/process.html#master-bootstrap-update-tuesday
2024-10-16 14:40:08 +00:00
Michal Piotrowski
b2b4ad4cc9
Fix explicit_iter_loop in rustc_serialize 2024-10-16 15:44:16 +02:00
Tamir Duberstein
69be18d4e2
rustc_metadata: reduce repetition 2024-10-16 08:38:29 -04:00
bors
0037048da8 Auto merge of #131775 - Urgau:rollup-yc4a3sf, r=Urgau
Rollup of 10 pull requests

Successful merges:

 - #131582 (Add wasm32-unknown-emscripten platform support document)
 - #131694 (Make fuchsia-test-runner.py compatible with new JSON output from llvm-readelf)
 - #131700 (Fix match_same_arms in stable_mir)
 - #131712 (Mark the unstable LazyCell::into_inner const)
 - #131746 (Relax a memory order in `once_box`)
 - #131754 (Don't report bivariance error when nesting a struct with field errors into another struct)
 - #131760 (llvm: Match aarch64 data layout to new LLVM layout)
 - #131764 (Fix unnecessary nesting in run-make test output directories)
 - #131766 (Add mailmap entry for my dev-desktop setup)
 - #131771 (Handle gracefully true/false in `cfg(target(..))` compact)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-16 12:14:19 +00:00
Michal Piotrowski
a10a44956e
Fix needless_lifetimes in stable_mir 2024-10-16 13:31:23 +02:00
Michal Piotrowski
89ea9e44f0
Fix trivially_copy_pass_by_ref in stable_mir 2024-10-16 12:36:44 +02:00
Urgau
e0e1e35a48
Rollup merge of #131771 - Urgau:cfg-target-131759, r=jieyouxu
Handle gracefully true/false in `cfg(target(..))` compact

This PR handles gracefully `true`/`false` in `cfg(target(..))` compact instead of ICE.

r? `@nnethercote`
Fixes #131759
2024-10-16 12:03:45 +02:00
Urgau
6b27c3057d
Rollup merge of #131760 - maurer:data-layout-aarch64, r=nikic
llvm: Match aarch64 data layout to new LLVM layout

LLVM has added 3 new address spaces to support special Windows use cases. These shouldn't trouble us for now, but LLVM requires matching data layouts.

See llvm/llvm-project#111879 for details
2024-10-16 12:03:43 +02:00
Urgau
329e570460
Rollup merge of #131754 - compiler-errors:bivariance-bivariance, r=estebank
Don't report bivariance error when nesting a struct with field errors into another struct

We currently have logic to avoid reporting lifetime bivariance ("lifetime parameter ... is never used") errors when a struct has field resolution errors. However, this doesn't apply transitively. This PR implements a simple visitor to do so.

This was reported [here](https://twitter.com/fasterthanlime/status/1846257921086165033) since a `derive(Deserialize, Serialize)` ends up generating helper structs which have bivariant lifetimes due to containing the offending struct (that's being derived on).
2024-10-16 12:03:43 +02:00
Urgau
9c7d57954c
Rollup merge of #131700 - practicalrs:fix_match_same_arms, r=celinval
Fix match_same_arms in stable_mir

Hi,

This PR fixes some clippy warnings

(Reopened https://github.com/rust-lang/rust/pull/131688)

```
warning: this match arm has an identical body to another arm
   --> compiler/stable_mir/src/mir/visit.rs:197:13
    |
197 | /             StatementKind::FakeRead(_, place) => {
198 | |                 self.visit_place(place, PlaceContext::NON_MUTATING, location);
199 | |             }
    | |_____________^
    |
    = help: try changing either arm body
    = help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#match_same_arms
help: or try merging the arm patterns
    |
197 |             StatementKind::FakeRead(_, place) | StatementKind::PlaceMention(place) => {
    |             ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
help: and remove this obsolete arm
    |
209 -             StatementKind::PlaceMention(place) => {
210 -                 self.visit_place(place, PlaceContext::NON_MUTATING, location);
211 -             }
    |

```

Best regards,
Michal
2024-10-16 12:03:41 +02:00
bors
d829780c4e Auto merge of #131481 - nnethercote:rm-GenKillSet, r=cjgillot
Remove `GenKillAnalysis`

There are two kinds of dataflow analysis in the compiler: `Analysis`, which is the basic kind, and `GenKillAnalysis`, which is a more specialized kind for gen/kill analyses that is intended as an optimization. However, it turns out that `GenKillAnalysis` is actually a  pessimization! It's faster (and much simpler) to do all the gen/kill analyses via `Analysis`. This lets us remove `GenKillAnalysis`, and `GenKillSet`, and a few other things, and also merge `AnalysisDomain` into `Analysis`. The PR removes 500 lines of code and improves performance.

r? `@tmiasko`
2024-10-16 09:45:05 +00:00
Urgau
5eb8636989 Handle gracefully true/false in cfg(target(..)) compact 2024-10-16 09:41:49 +02:00
bors
9618da7c99 Auto merge of #131422 - GnomedDev:smallvec-predicate-obligations, r=compiler-errors
Use `ThinVec` for PredicateObligation storage

~~I noticed while profiling clippy on a project that a large amount of time is being spent allocating `Vec`s for `PredicateObligation`, and the `Vec`s are often quite small. This is an attempt to optimise this by using SmallVec to avoid heap allocations for these common small Vecs.~~

This PR turns all the `Vec<PredicateObligation>` into a single type alias while avoiding referring to `Vec` around it, then swaps the type over to `ThinVec<PredicateObligation>` and fixes the fallout. This also contains an implementation of `ThinVec::extract_if`, copied from `Vec::extract_if` and currently being upstreamed to https://github.com/Gankra/thin-vec/pull/66.

This leads to a small (0.2-0.7%) performance gain in the latest perf run.
2024-10-16 04:06:14 +00:00
Josh Stone
acb09bf741 update bootstrap configs 2024-10-15 20:30:23 -07:00
Josh Stone
f204e2c23b replace placeholder version
(cherry picked from commit 567fd9610c)
2024-10-15 20:13:55 -07:00
Matthew Maurer
e985396145 llvm: Match aarch64 data layout to new LLVM layout
LLVM has added 3 new address spaces to support special Windows use
cases. These shouldn't trouble us for now, but LLVM requires matching
data layouts.

See llvm/llvm-project#111879 for details
2024-10-16 01:16:44 +00:00
Michael Goulet
c7730989de Don't check unsize goal in MIR validation when opaques remain 2024-10-15 21:01:42 -04:00
Michael Goulet
9070abab4b Structurally resolve in may_coerce 2024-10-15 20:44:39 -04:00
Michael Goulet
e3eba2d920 Don't structurally resolve in may_coerce 2024-10-15 20:44:39 -04:00
Michael Goulet
b4e9aad137 Rename can_coerce to may_coerce 2024-10-15 20:44:39 -04:00
Michael Goulet
0ead25c4a9 Register a dummy candidate for failed structural normalization during candiate assembly 2024-10-15 20:42:17 -04:00
Michael Goulet
8528387743 Be better at reporting alias errors 2024-10-15 20:42:17 -04:00
Michael Goulet
fd2038d344 Make sure the alias is actually rigid 2024-10-15 20:42:17 -04:00
Michael Goulet
50b8029ce1 Always recurse on predicates in BestObligation 2024-10-15 20:36:51 -04:00
bors
e7c0d27507 Auto merge of #131747 - compiler-errors:rollup-0fnymws, r=compiler-errors
Rollup of 7 pull requests

Successful merges:

 - #129794 (uefi: Implement getcwd and chdir)
 - #130568 (Make some float methods unstable `const fn`)
 - #131521 (rename RcBox to RcInner for consistency)
 - #131701 (Don't report `on_unimplemented` message for negative traits)
 - #131705 (Fix most ui tests on emscripten target)
 - #131733 (Fix uninlined_format_args in stable_mir)
 - #131734 (Update `arm64e-apple-tvos` maintainer)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-15 19:55:10 +00:00
Michael Goulet
68885216b6 Don't report bivariance error when nesting a struct with field errors into another struct 2024-10-15 14:58:54 -04:00
Michael Goulet
4886e9a134 Unify secondary_span and swap_secondary_and_primary 2024-10-15 14:39:49 -04:00
Michael Goulet
53d1a6616a
Rollup merge of #131733 - practicalrs:fix_uninlined_format_args, r=jieyouxu
Fix uninlined_format_args in stable_mir

Hi,

This PR fixes some clippy warnings

```
warning: variables can be used directly in the `format!` string
   --> compiler/stable_mir/src/mir/pretty.rs:362:13
    |
362 |             write!(writer, "{kind}{:?}", place)
    |             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
    |
    = help: for further information visit https://rust-lang.github.io/rust-clippy/master/index.html#uninlined_format_args
    = note: requested on the command line with `-W clippy::uninlined-format-args`
help: change this to
    |
362 -             write!(writer, "{kind}{:?}", place)
362 +             write!(writer, "{kind}{place:?}")
    |
```

Best regards,
Michal
2024-10-15 12:33:37 -04:00
Michael Goulet
6558e3470b
Rollup merge of #131701 - compiler-errors:negative-bounds-on-unimplemented, r=lcnr
Don't report `on_unimplemented` message for negative traits

Kinda useless change but it was affecting my ability to read error messages when experimenting with negative bounds.
2024-10-15 12:33:36 -04:00
Michael Goulet
1c799ff05e
Rollup merge of #131521 - jdonszelmann:rc, r=joboet
rename RcBox to RcInner for consistency

Arc uses ArcInner too (created in collaboration with `@aDotInTheVoid` and `@WaffleLapkin` )
2024-10-15 12:33:36 -04:00
Michael Goulet
2f3f001423
Rollup merge of #130568 - eduardosm:const-float-methods, r=RalfJung,tgross35
Make some float methods unstable `const fn`

Some float methods are now `const fn` under the `const_float_methods` feature gate.

I also made some unstable methods `const fn`, keeping their constness under their respective feature gate.

In order to support `min`, `max`, `abs` and `copysign`, the implementation of some intrinsics had to be moved from Miri to rustc_const_eval (cc `@RalfJung).`

Tracking issue: https://github.com/rust-lang/rust/issues/130843

```rust
impl <float> {
    // #[feature(const_float_methods)]
    pub const fn recip(self) -> Self;
    pub const fn to_degrees(self) -> Self;
    pub const fn to_radians(self) -> Self;
    pub const fn max(self, other: Self) -> Self;
    pub const fn min(self, other: Self) -> Self;
    pub const fn clamp(self, min: Self, max: Self) -> Self;
    pub const fn abs(self) -> Self;
    pub const fn signum(self) -> Self;
    pub const fn copysign(self, sign: Self) -> Self;

    // #[feature(float_minimum_maximum)]
    pub const fn maximum(self, other: Self) -> Self;
    pub const fn minimum(self, other: Self) -> Self;

    // Only f16/f128 (f32/f64 already const)
    pub const fn is_sign_positive(self) -> bool;
    pub const fn is_sign_negative(self) -> bool;
    pub const fn next_up(self) -> Self;
    pub const fn next_down(self) -> Self;
}
```

r? libs-api

try-job: dist-s390x-linux
2024-10-15 12:33:35 -04:00
Tamir Duberstein
f395551352
rustc_metadata: replace ? in expression with map 2024-10-15 11:14:34 -04:00
Tamir Duberstein
93cee99368
rustc_metadata: move comment closer to code
This was added in cc3c8bbfaf when it was
closer to the `extract_one` call. Move it back near that call.
2024-10-15 11:13:28 -04:00
bors
a0c2aba29a Auto merge of #130654 - lcnr:stabilize-coherence-again, r=compiler-errors
stabilize `-Znext-solver=coherence` again

r? `@compiler-errors`

---

This PR stabilizes the use of the next generation trait solver in coherence checking by enabling `-Znext-solver=coherence` by default. More specifically its use in the *implicit negative overlap check*. The tracking issue for this is https://github.com/rust-lang/rust/issues/114862. Closes #114862.

This is a direct copy of #121848 which has been reverted due to a hang in `nalgebra`: #130056. This hang should have been fixed by #130617 and #130821. See the added section in the stabilization report containing user facing changes merged since the original FCP.

## Background

### The next generation trait solver

The new solver lives in [`rustc_trait_selection::solve`](https://github.com/rust-lang/rust/blob/master/compiler/rustc_trait_selection/src/solve/mod.rs) and is intended to replace the existing *evaluate*, *fulfill*, and *project* implementation. It also has a wider impact on the rest of the type system, for example by changing our approach to handling associated types.

For a more detailed explanation of the new trait solver, see the [rustc-dev-guide](https://rustc-dev-guide.rust-lang.org/solve/trait-solving.html). This does not stabilize the current behavior of the new trait solver, only the behavior impacting the implicit negative overlap check. There are many areas in the new solver which are not yet finalized. We are confident that their final design will not conflict with the user-facing behavior observable via coherence. More on that further down.

Please check out [the chapter](https://rustc-dev-guide.rust-lang.org/solve/significant-changes.html) summarizing the most significant changes between the existing and new implementations.

### Coherence and the implicit negative overlap check

Coherence checking detects any overlapping impls. Overlapping trait impls always error while overlapping inherent impls result in an error if they have methods with the same name. Coherence also results in an error if any other impls could exist, even if they are currently unknown. This affects impls which may get added to upstream crates in a backwards compatible way and impls from downstream crates.

Coherence failing to detect overlap is generally considered to be unsound, even if it is difficult to actually get runtime UB this way. It is quite easy to get ICEs due to bugs in coherence.

It currently consists of two checks:

The [orphan check] validates that impls do not overlap with other impls we do not know about: either because they may be defined in a sibling crate, or because an upstream crate is allowed to add it without being considered a breaking change.

The [overlap check] validates that impls do not overlap with other impls we know about. This is done as follows:
- Instantiate the generic parameters of both impls with inference variables
- Equate the `TraitRef`s of both impls. If it fails there is no overlap.
- [implicit negative]: Check whether any of the instantiated `where`-bounds of one of the impls definitely do not hold when using the constraints from the previous step. If a `where`-bound does not hold, there is no overlap.
- *explicit negative (still unstable, ignored going forward)*: Check whether the any negated `where`-bounds can be proven, e.g. a `&mut u32: Clone` bound definitely does not hold as an explicit `impl<T> !Clone for &mut T` exists.

The overlap check has to *prove that unifying the impls does not succeed*. This means that **incorrectly getting a type error during coherence is unsound** as it would allow impls to overlap: coherence has to be *complete*.

Completeness means that we never incorrectly error. This means that during coherence we must only add inference constraints if they are definitely necessary. During ordinary type checking [this does not hold](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=01d93b592bd9036ac96071cbf1d624a9), so the trait solver has to behave differently, depending on whether we're in coherence or not.

The implicit negative check only considers goals to "definitely not hold" if they could not be implemented downstream, by a sibling, or upstream in a backwards compatible way. If the goal is is "unknowable" as it may get added in another crate, we add an ambiguous candidate: [source](bea5bebf3d/compiler/rustc_trait_selection/src/solve/assembly/mod.rs (L858-L883)).

[orphan check]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L566-L579)
[overlap check]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L92-L98)
[implicit negative]: fd80c02c16/compiler/rustc_trait_selection/src/traits/coherence.rs (L223-L281)

## Motivation

Replacing the existing solver in coherence fixes soundness bugs by removing sources of incompleteness in the type system. The new solver separately strengthens coherence, resulting in more impls being disjoint and passing the coherence check. The concrete changes will be elaborated further down. We believe the stabilization to reduce the likelihood of future bugs in coherence as the new implementation is easier to understand and reason about.

It allows us to remove the support for coherence and implicit-negative reasoning in the old solver, allowing us to remove some code and simplifying the old trait solver. We will only remove the old solver support once this stabilization has reached stable to make sure we're able to quickly revert in case any unexpected issues are detected before then.

Stabilizing the use of the next-generation trait solver expresses our confidence that its current behavior is intended and our work towards enabling its use everywhere will not require any breaking changes to the areas used by coherence checking. We are also confident that we will be able to replace the existing solver everywhere, as maintaining two separate systems adds a significant maintainance burden.

## User-facing impact and reasoning

### Breakage due to improved handling of associated types

The new solver fixes multiple issues related to associated types. As these issues caused coherence to consider more types distinct, fixing them results in more overlap errors. This is therefore a breaking change.

#### Structurally relating aliases containing bound vars

Fixes https://github.com/rust-lang/rust/issues/102048. In the existing solver relating ambiguous projections containing bound variables is structural. This is *incomplete* and allows overlapping impls. These was mostly not exploitable as the same issue also caused impls to not apply when trying to use them. The new solver defers alias-relating to a nested goal, fixing this issue:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Trait {}

trait Project {
    type Assoc<'a>;
}

impl Project for u32 {
    type Assoc<'a> = &'a u32;
}

// Eagerly normalizing `<?infer as Project>::Assoc<'a>` is ambiguous,
// so the old solver ended up structurally relating
//
//     (?infer, for<'a> fn(<?infer as Project>::Assoc<'a>))
//
// with
//
//     ((u32, fn(&'a u32)))
//
// Equating `&'a u32` with `<u32 as Project>::Assoc<'a>` failed, even
// though these types are equal modulo normalization.
impl<T: Project> Trait for (T, for<'a> fn(<T as Project>::Assoc<'a>)) {}

impl<'a> Trait for (u32, fn(&'a u32)) {}
//[next]~^ ERROR conflicting implementations of trait `Trait` for type `(u32, for<'a> fn(&'a u32))`
```

A crater run did not discover any breakage due to this change.

#### Unknowable candidates for higher ranked trait goals

This avoids an unsoundness by attempting to normalize in `trait_ref_is_knowable`, fixing https://github.com/rust-lang/rust/issues/114061. This is a side-effect of supporting lazy normalization, as that forces us to attempt to normalize when checking whether a `TraitRef` is knowable: [source](47dd709bed/compiler/rustc_trait_selection/src/solve/assembly/mod.rs (L754-L764)).

```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait IsUnit {}
impl IsUnit for () {}

pub trait WithAssoc<'a> {
    type Assoc;
}

// We considered `for<'a> <T as WithAssoc<'a>>::Assoc: IsUnit`
// to be knowable, even though the projection is ambiguous.
pub trait Trait {}
impl<T> Trait for T
where
    T: 'static,
    for<'a> T: WithAssoc<'a>,
    for<'a> <T as WithAssoc<'a>>::Assoc: IsUnit,
{
}
impl<T> Trait for Box<T> {}
//[next]~^ ERROR conflicting implementations of trait `Trait`
```
The two impls of `Trait` overlap given the following downstream crate:
```rust
use dep::*;
struct Local;
impl WithAssoc<'_> for Box<Local> {
    type Assoc = ();
}
```

There a similar coherence unsoundness caused by our handling of aliases which is fixed separately in https://github.com/rust-lang/rust/pull/117164.

This change breaks the [`derive-visitor`](https://crates.io/crates/derive-visitor) crate. I have opened an issue in that repo: nikis05/derive-visitor#16.

### Evaluating goals to a fixpoint and applying inference constraints

In the old implementation of the implicit-negative check, each obligation is [checked separately without applying its inference constraints](bea5bebf3d/compiler/rustc_trait_selection/src/traits/coherence.rs (L323-L338)). The new solver instead [uses a `FulfillmentCtxt`](bea5bebf3d/compiler/rustc_trait_selection/src/traits/coherence.rs (L315-L321)) for this, which evaluates all obligations in a loop until there's no further inference progress.

This is necessary for backwards compatibility as we do not eagerly normalize with the new solver, resulting in constraints from normalization to only get applied by evaluating a separate obligation. This also allows more code to compile:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Mirror {
    type Assoc;
}
impl<T> Mirror for T {
    type Assoc = T;
}

trait Foo {}
trait Bar {}

// The self type starts out as `?0` but is constrained to `()`
// due to the where-clause below. Because `(): Bar` is known to
// not hold, we can prove the impls disjoint.
impl<T> Foo for T where (): Mirror<Assoc = T> {}
//[current]~^ ERROR conflicting implementations of trait `Foo` for type `()`
impl<T> Foo for T where T: Bar {}

fn main() {}
```
The old solver does not run nested goals to a fixpoint in evaluation. The new solver does do so, strengthening inference and improving the overlap check:
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait Foo {}
impl<T> Foo for (u8, T, T) {}
trait NotU8 {}
trait Bar {}
impl<T, U: NotU8> Bar for (T, T, U) {}

trait NeedsFixpoint {}
impl<T: Foo + Bar> NeedsFixpoint for T {}
impl NeedsFixpoint for (u8, u8, u8) {}

trait Overlap {}
impl<T: NeedsFixpoint> Overlap for T {}
impl<T, U: NotU8, V> Overlap for (T, U, V) {}
//[current]~^ ERROR conflicting implementations of trait `Foo`
```

### Breakage due to removal of incomplete candidate preference

Fixes #107887. In the old solver we incompletely prefer the builtin trait object impl over user defined impls. This can break inference guidance, inferring `?x` in `dyn Trait<u32>: Trait<?x>` to `u32`, even if an explicit impl of `Trait<u64>` also exists.

This caused coherence to incorrectly allow overlapping impls, resulting in ICEs and a theoretical unsoundness. See https://github.com/rust-lang/rust/issues/107887#issuecomment-1997261676. This compiles on stable but results in an overlap error with `-Znext-solver=coherence`:

```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
struct W<T: ?Sized>(*const T);

trait Trait<T: ?Sized> {
    type Assoc;
}

// This would trigger the check for overlap between automatic and custom impl.
// They actually don't overlap so an impl like this should remain possible
// forever.
//
// impl Trait<u64> for dyn Trait<u32> {}
trait Indirect {}
impl Indirect for dyn Trait<u32, Assoc = ()> {}
impl<T: Indirect + ?Sized> Trait<u64> for T {
    type Assoc = ();
}

// Incomplete impl where `dyn Trait<u32>: Trait<_>` does not hold, but
// `dyn Trait<u32>: Trait<u64>` does.
trait EvaluateHack<U: ?Sized> {}
impl<T: ?Sized, U: ?Sized> EvaluateHack<W<U>> for T
where
    T: Trait<U, Assoc = ()>, // incompletely constrains `_` to `u32`
    U: IsU64,
    T: Trait<U, Assoc = ()>, // incompletely constrains `_` to `u32`
{
}

trait IsU64 {}
impl IsU64 for u64 {}

trait Overlap<U: ?Sized> {
    type Assoc: Default;
}
impl<T: ?Sized + EvaluateHack<W<U>>, U: ?Sized> Overlap<U> for T {
    type Assoc = Box<u32>;
}
impl<U: ?Sized> Overlap<U> for dyn Trait<u32, Assoc = ()> {
//[next]~^ ERROR conflicting implementations of trait `Overlap<_>`
    type Assoc = usize;
}
```

### Considering region outlives bounds in the `leak_check`

For details on the `leak_check`, see the FCP proposal #119820.[^leak_check]

[^leak_check]: which should get moved to the dev-guide :3

In both coherence and during candidate selection, the `leak_check` relies on the region constraints added in `evaluate`. It therefore currently does not register outlives obligations: [source](ccb1415eac/compiler/rustc_trait_selection/src/traits/select/mod.rs (L792-L810)). This was likely done as a performance optimization without considering its impact on the `leak_check`. This is the case as in the old solver, *evaluatation* and *fulfillment* are split, with evaluation being responsible for candidate selection and fulfillment actually registering all the constraints.

This split does not exist with the new solver. The `leak_check` can therefore eagerly detect errors caused by region outlives obligations. This improves both coherence itself and candidate selection:

```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
trait LeakErr<'a, 'b> {}
// Using this impl adds an `'b: 'a` bound which results
// in a higher-ranked region error. This bound has been
// previously ignored but is now considered.
impl<'a, 'b: 'a> LeakErr<'a, 'b> for () {}

trait NoOverlapDir<'a> {}
impl<'a, T: for<'b> LeakErr<'a, 'b>> NoOverlapDir<'a> for T {}
impl<'a> NoOverlapDir<'a> for () {}
//[current]~^ ERROR conflicting implementations of trait `NoOverlapDir<'_>`

// --------------------------------------

// necessary to avoid coherence unknowable candidates
struct W<T>(T);

trait GuidesSelection<'a, U> {}
impl<'a, T: for<'b> LeakErr<'a, 'b>> GuidesSelection<'a, W<u32>> for T {}
impl<'a, T> GuidesSelection<'a, W<u8>> for T {}

trait NotImplementedByU8 {}
trait NoOverlapInd<'a, U> {}
impl<'a, T: GuidesSelection<'a, W<U>>, U> NoOverlapInd<'a, U> for T {}
impl<'a, U: NotImplementedByU8> NoOverlapInd<'a, U> for () {}
//[current]~^ conflicting implementations of trait `NoOverlapInd<'_, _>`
```

### Removal of `fn match_fresh_trait_refs`

The old solver tries to [eagerly detect unbounded recursion](b14fd2359f/compiler/rustc_trait_selection/src/traits/select/mod.rs (L1196-L1211)), forcing the affected goals to be ambiguous. This check is only an approximation and has not been added to the new solver.

The check is not necessary in the new solver and it would be problematic for caching. As it depends on all goals currently on the stack, using a global cache entry would have to always make sure that doing so does not circumvent this check.

This changes some goals to error - or succeed - instead of failing with ambiguity. This allows more code to compile:

```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence

// Need to use this local wrapper for the impls to be fully
// knowable as unknowable candidate result in ambiguity.
struct Local<T>(T);

trait Trait<U> {}
// This impl does not hold, but is ambiguous in the old
// solver due to its overflow approximation.
impl<U> Trait<U> for Local<u32> where Local<u16>: Trait<U> {}
// This impl holds.
impl Trait<Local<()>> for Local<u8> {}

// In the old solver, `Local<?t>: Trait<Local<?u>>` is ambiguous,
// resulting in `Local<?u>: NoImpl`, also being ambiguous.
//
// In the new solver the first impl does not apply, constraining
// `?u` to `Local<()>`, causing `Local<()>: NoImpl` to error.
trait Indirect<T> {}
impl<T, U> Indirect<U> for T
where
    T: Trait<U>,
    U: NoImpl
{}

// Not implemented for `Local<()>`
trait NoImpl {}
impl NoImpl for Local<u8> {}
impl NoImpl for Local<u16> {}

// `Local<?t>: Indirect<Local<?u>>` cannot hold, so
// these impls do not overlap.
trait NoOverlap<U> {}
impl<T: Indirect<U>, U> NoOverlap<U> for T {}
impl<T, U> NoOverlap<Local<U>> for Local<T> {}
//~^ ERROR conflicting implementations of trait `NoOverlap<Local<_>>`
```

### Non-fatal overflow

The old solver immediately emits a fatal error when hitting the recursion limit. The new solver instead returns overflow. This both allows more code to compile and is results in performance and potential future compatability issues.

Non-fatal overflow is generally desirable. With fatal overflow, changing the order in which we evaluate nested goals easily causes breakage if we have goal which errors and one which overflows. It is also required to prevent breakage due to the removal of `fn match_fresh_trait_refs`, e.g. [in `typenum`](https://github.com/rust-lang/trait-system-refactor-initiative/issues/73).

#### Enabling more code to compile

In the below example, the old solver first tried to prove an overflowing goal, resulting in a fatal error. The new solver instead returns ambiguity due to overflow for that goal, causing the implicit negative overlap check to succeed as `Box<u32>: NotImplemented` does not hold.
```rust
// revisions: current next
//[next] compile-flags: -Znext-solver=coherence
//[current] ERROR overflow evaluating the requirement

trait Indirect<T> {}
impl<T: Overflow<()>> Indirect<T> for () {}

trait Overflow<U> {}
impl<T, U> Overflow<U> for Box<T>
where
    U: Indirect<Box<Box<T>>>,
{}

trait NotImplemented {}

trait Trait<U> {}
impl<T, U> Trait<U> for T
where
    // T: NotImplemented, // causes old solver to succeed
    U: Indirect<T>,
    T: NotImplemented,
{}

impl Trait<()> for Box<u32> {}
```

#### Avoiding hangs with non-fatal overflow

Simply returning ambiguity when reaching the recursion limit can very easily result in hangs, e.g.
```rust
trait Recur {}
impl<T, U> Recur for ((T, U), (U, T))
where
    (T, U): Recur,
    (U, T): Recur,
{}

trait NotImplemented {}
impl<T: NotImplemented> Recur for T {}
```
This can happen quite frequently as it's easy to have exponential blowup due to multiple nested goals at each step. As the trait solver is depth-first, this immediately caused a fatal overflow error in the old solver. In the new solver we have to handle the whole proof tree instead, which can very easily hang.

To avoid this we restrict the recursion depth after hitting the recursion limit for the first time. We also **ignore all inference constraints from goals resulting in overflow**. This is mostly backwards compatible as any overflow in the old solver resulted in a fatal error.

### sidenote about normalization

We return ambiguous nested goals of `NormalizesTo` goals to the caller and ignore their impact when computing the `Certainty` of the current goal. See the [normalization chapter](https://rustc-dev-guide.rust-lang.org/solve/normalization.html) for more details.This means we apply constraints resulting from other nested goals and from equating the impl header when normalizing, even if a nested goal results in overflow. This is necessary to avoid breaking the following example:
```rust
trait Trait {
    type Assoc;
}

struct W<T: ?Sized>(*mut T);
impl<T: ?Sized> Trait for W<W<T>>
where
    W<T>: Trait,
{
    type Assoc = ();
}

// `W<?t>: Trait<Assoc = u32>` does not hold as
// `Assoc` gets normalized to `()`. However, proving
// the where-bounds of the impl results in overflow.
//
// For this to continue to compile we must not discard
// constraints from normalizing associated types.
trait NoOverlap {}
impl<T: Trait<Assoc = u32>> NoOverlap for T {}
impl<T: ?Sized> NoOverlap for W<T> {}
```

#### Future compatability concerns

Non-fatal overflow results in some unfortunate future compatability concerns. Changing the approach to avoid more hangs by more strongly penalizing overflow can cause breakage as we either drop constraints or ignore candidates necessary to successfully compile. Weakening the overflow penalities instead allows more code to compile and strengthens inference while potentially causing more code to hang.

While the current approach is not perfect, we believe it to be good enough. We believe it to apply the necessary inference constraints to avoid breakage and expect there to not be any desirable patterns broken by our current penalities. Similarly we believe the current constraints to avoid most accidental hangs. Ignoring constraints of overflowing goals is especially useful, as it may allow major future optimizations to our overflow handling. See [this summary](https://hackmd.io/ATf4hN0NRY-w2LIVgeFsVg) and the linked documents in case you want to know more.

### changes to performance

In general, trait solving during coherence checking is not significant for performance. Enabling the next-generation trait solver in coherence does not impact our compile time benchmarks. We are still unable to compile the benchmark suite when fully enabling the new trait solver.

There are rare cases where the new solver has significantly worse performance due to non-fatal overflow, its reliance on fixpoint algorithms and the removal of the `fn match_fresh_trait_refs` approximation. We encountered such issues in [`typenum`](https://crates.io/crates/typenum) and believe it should be [pretty much as bad as it can get](https://github.com/rust-lang/trait-system-refactor-initiative/issues/73).

Due to an improved structure and far better caching, we believe that there is a lot of room for improvement and that the new solver will outperform the existing implementation in nearly all cases, sometimes significantly. We have not yet spent any time micro-optimizing the implementation and have many unimplemented major improvements, such as fast-paths for trivial goals.

### Unstable features

#### Unsupported unstable features

The new solver currently does not support all unstable features, most notably `#![feature(generic_const_exprs)]`, `#![feature(associated_const_equality)]` and `#![feature(adt_const_params)]` are not yet fully supported in the new solver. We are confident that supporting them is possible, but did not consider this to be a priority. This stabilization introduces new ICE when using these features in impl headers.

#### fixes to `#![feature(specialization)]`

- fixes #105782
- fixes #118987

#### fixes to `#![feature(type_alias_impl_trait)]`

- fixes #119272
- https://github.com/rust-lang/rust/issues/105787#issuecomment-1750112388
- fixes #124207

### Important changes since the original FCP

https://github.com/rust-lang/rust/pull/127574 changes the coherence unknowable candidate to only apply if all the super trait bounds may hold. This allows more code to compile and fixes a regression in `pyella`

https://github.com/rust-lang/rust/pull/130617 bails with ambiguity if the query response would contain too many non-region inference variables. This should only be triggered in case the result contains a lot of ambiguous aliases in which case further constraining the goal should resolve this.

https://github.com/rust-lang/rust/pull/130821 adds caching to a lot of type folders, which is necessary to handle exponentially large types and handles the hang in `nalgebra` together with #130617.

## This does not stabilize the whole solver

While this stabilizes the use of the new solver in coherence checking, there are many parts of the solver which will remain fully unstable. We may still adapt these areas while working towards stabilizing the new solver everywhere. We are confident that we are able to do so without negatively impacting coherence.

### goals with a non-empty `ParamEnv`

Coherence always uses an empty environment. We therefore do not depend on the behavior of `AliasBound` and `ParamEnv` candidates. We only stabilizes the behavior of user-defined and builtin implementations of traits. There are still many open questions there.

### opaque types in the defining scope

The handling of opaque types - `impl Trait` - in both the new and old solver is still not fully figured out. Luckily this can be ignored for now. While opaque types are reachable during coherence checking by using `impl_trait_in_associated_types`, the behavior during coherence is separate and self-contained. The old and new solver fully agree here.

### normalization is hard

This stabilizes that we equate associated types involving bound variables using deferred-alias-equality. We also stop eagerly normalizing in coherence, which should not have any user-facing impact.

We do not stabilize the normalization behavior outside of coherence, e.g. we currently deeply normalize all types during writeback with the new solver. This may change going forward

### how to replace `select` from the old solver

We sometimes depend on getting a single `impl` for a given trait bound, e.g. when resolving a concrete method for codegen/CTFE. We do not depend on this during coherence, so the exact approach here can still be freely changed going forward.

## Acknowledgements

This work would not have been possible without `@compiler-errors.` He implemented large chunks of the solver himself but also and did a lot of testing and experimentation, eagerly discovering multiple issues which had a significant impact on our approach. `@BoxyUwU` has also done some amazing work on the solver. Thank you for the endless hours of discussion resulting in the current approach. Especially the way aliases are handled has gone through multiple revisions to get to its current state.

There were also many contributions from - and discussions with - other members of the community and the rest of `@rust-lang/types.` This solver builds upon previous improvements to the compiler, as well as lessons learned from `chalk` and `a-mir-formality`. Getting to this point  would not have been possible without that and I am incredibly thankful to everyone involved. See the [list of relevant PRs](https://github.com/rust-lang/rust/pulls?q=is%3Apr+is%3Amerged+label%3AWG-trait-system-refactor+-label%3Arollup+closed%3A%3C2024-03-22+).
2024-10-15 14:21:34 +00:00
bors
f79fae3069 Auto merge of #131723 - matthiaskrgr:rollup-krcslig, r=matthiaskrgr
Rollup of 9 pull requests

Successful merges:

 - #122670 (Fix bug where `option_env!` would return `None` when env var is present but not valid Unicode)
 - #131095 (Use environment variables instead of command line arguments for merged doctests)
 - #131339 (Expand set_ptr_value / with_metadata_of docs)
 - #131652 (Move polarity into `PolyTraitRef` rather than storing it on the side)
 - #131675 (Update lint message for ABI not supported)
 - #131681 (Fix up-to-date checking for run-make tests)
 - #131702 (Suppress import errors for traits that couldve applied for method lookup error)
 - #131703 (Resolved python deprecation warning in publish_toolstate.py)
 - #131710 (Remove `'apostrophes'` from `rustc_parse_format`)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-15 11:50:31 +00:00
Michal Piotrowski
d3d59055a9
Fix uninlined_format_args in stable_mir 2024-10-15 13:49:07 +02:00
lcnr
1a9d2d82a5 stabilize -Znext-solver=coherence 2024-10-15 13:11:00 +02:00
Eduardo Sánchez Muñoz
c09ed3e767 Make some float methods unstable const fn
Some float methods are now `const fn` under the `const_float_methods` feature gate.

In order to support `min`, `max`, `abs` and `copysign`, the implementation of some intrinsics had to be moved from Miri to rustc_const_eval.
2024-10-15 10:46:33 +02:00
bors
88f311479d Auto merge of #131724 - matthiaskrgr:rollup-ntgkkk8, r=matthiaskrgr
Rollup of 7 pull requests

Successful merges:

 - #130608 (Implemented `FromStr` for `CString` and `TryFrom<CString>` for `String`)
 - #130635 (Add `&pin (mut|const) T` type position sugar)
 - #130747 (improve error messages for `C-cmse-nonsecure-entry` functions)
 - #131137 (Add 1.82 release notes)
 - #131328 (Remove unnecessary sorts in `rustc_hir_analysis`)
 - #131496 (Stabilise `const_make_ascii`.)
 - #131706 (Fix two const-hacks)

r? `@ghost`
`@rustbot` modify labels: rollup
2024-10-15 05:02:38 +00:00
Matthias Krüger
b9cb20154d
Rollup merge of #131328 - ismailarilik:remove-unnecessary-sorts-in-rustc-hir-analysis, r=compiler-errors
Remove unnecessary sorts in `rustc_hir_analysis`

A follow-up after #131140. Here the related objects are `IndexSet` so do not require a sort to stay stable. And they don't need to be `mut` anymore.

r? ```@compiler-errors```
2024-10-15 05:12:36 +02:00
Matthias Krüger
731e360d15
Rollup merge of #130747 - folkertdev:c-cmse-nonsecure-entry-error-messages, r=compiler-errors
improve error messages for `C-cmse-nonsecure-entry` functions

fixes https://github.com/rust-lang/rust/issues/81347

tracking issue: https://github.com/rust-lang/rust/issues/75835

brings error messages and testing for `C-cmse-nonsecure-entry` in line with `C-cmse-nonsecure-call`.

r? `@compiler-errors`
2024-10-15 05:12:35 +02:00