`AtomicBool` is defined to have the same layout as `bool`, which means
that we guarantee that it has a size of 1 byte. However on certain
architectures such as RISC-V, LLVM will emulate byte atomics using a
masked CAS loop on an aligned word.
We can take advantage of the fact that `bool` only ever has a value of 0
or 1 to replace `swap` operations with `and`/`or` operations that LLVM
can lower to word-sized atomic `and`/`or` operations. This takes
advantage of the fact that the incoming value to a `swap` or
`compare_exchange` for `AtomicBool` is often a compile-time constant.
delete [allow(unused_unsafe)] from issue #74838
While looking into issue #111288 I noticed the following `#[allow(...)]` with a `FIXME` asking for it to be removed. Deleting the `#[allow(...)]` does not seem to break anything, it seems like the lint has been updated for unsafe blocks in macros?
Fix size_hint for EncodeUtf16
More realistic upper and lower bounds, and handle the case where the iterator is located within a surrogate pair.
Resolves#113897
Update the tracking issue for `const_cstr_from_ptr`
Tracking issue #101719 was for `const_cstr_methods`, #113219 is a new issue specific for `const_cstr_from_ptr`.
(I believe #101719 could also be closed)
```@rustbot``` label +T-libs-api +A-docs
remove the unstable `core::sync::atomic::ATOMIC_*_INIT` constants
Tracking issue: #99069
It would be weird to ever stabilise these as they are already deprecated.
Enable coinduction support for Safe Transmute
This patch adds the `#[rustc_coinductive]` annotation to `BikeshedIntrinsicFrom`, so that it's possible to compute transmutability for recursive types.
## Motivation
Safe Transmute currently already supports references (#110662). However, if a type is implemented recursively, it leads to an infinite loop when we try to check if transmutation is safe.
A couple simple examples that one might want to write, that are currently not possible to check transmutability for:
```rs
#[repr(C)] struct A(&'static B);
#[repr(C)] struct B(&'static A);
```
```rs
#[repr(C)]
enum IList<'a> { Nil, Cons(isize, &'a IList<'a>) }
#[repr(C)]
enum UList<'a> { Nil, Cons(usize, &'a UList<'a>) }
```
Previously, `@jswrenn` was considering writing a co-inductive solver from scratch, just for the `rustc_tranmsute` crate. Later on as I started working on Safe Transmute myself, I came across the `#[rustc_coinductive]` annotation, which is currently only being used for the `Sized` trait. Leveraging this trait actually solved the problem entirely, and it saves a lot of duplicate work that would have had to happen in `rustc_transmute`.
Uplift `clippy::fn_null_check` lint
This PR aims at uplifting the `clippy::fn_null_check` lint into rustc.
## `incorrect_fn_null_checks`
(warn-by-default)
The `incorrect_fn_null_checks` lint checks for expression that checks if a function pointer is null.
### Example
```rust
let fn_ptr: fn() = /* somehow obtained nullable function pointer */
if (fn_ptr as *const ()).is_null() { /* ... */ }
```
### Explanation
Function pointers are assumed to be non-null, checking for their nullity is incorrect.
-----
Mostly followed the instructions for uplifting a clippy lint described here: https://github.com/rust-lang/rust/pull/99696#pullrequestreview-1134072751
`@rustbot` label: +I-lang-nominated
r? compiler
enable test_join test in Miri
Miri for quite a while now has a hack to support self-referential generators: non-`Unique` mutable references are exempt from aliasing conditions. So we can run this test now. (It passes.)
Also extend a comment in a Vec test, while I am at it.
Mark wrapped intrinsics as inline(always)
This should mitigate having the inliner decide not to inline when the architecture is lacking an implementation of
TargetTransformInfo::areInlineCompatible aware of the target features (e.g. PowerPC as today).
See https://github.com/rust-lang/stdarch/pull/1443#issuecomment-1613788080
This should mitigate having the inliner decide not to inline when
the architecture is lacking an implementation of
TargetTransformInfo::areInlineCompatible aware of the target
features (e.g. PowerPC as today).
Stabilize `const_cstr_methods`
This PR seeks to stabilize `const_cstr_methods`. Fixes most of #101719
## New const stable API
```rust
impl CStr {
// depends: memchr
pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, FromBytesWithNulError> {...}
// depends: const_slice_index
pub const fn to_bytes(&self) -> &[u8] {}
// depends: pointer casts
pub const fn to_bytes_with_nul(&self) -> &[u8] {}
// depends: str::from_utf8
pub const fn to_str(&self) -> Result<&str, str::Utf8Error> {}
}
```
I don't think any of these methods will have any issue when `CStr` becomes a thin pointer as long as `memchr` is const (which also allows for const `strlen`) .
## Notes
- `from_bytes_until_nul` relies on `const_slice_index`, which relies on `const_trait_impls`, and generally this should be avoided. After talking with Oli, it should be OK in this case because we could replace the ranges with pointer tricks if needed (worst case being those feature gates disappear). https://github.com/rust-lang/rust/pull/107624#discussion_r1101468480
- Making `from_ptr` const is deferred because it depends on `const_eval_select`. I have moved this under the new flag `const_cstr_from_ptr` https://github.com/rust-lang/rust/pull/107624#discussion_r1101555239
cc ``@oli-obk`` I think you're the const expert
``@rustbot`` modify labels: +T-libs-api +needs-fcp
This patch adds the `#[rustc_coinductive]` annotation to
`BikeshedIntrinsicFrom`, so that it's possible to compute transmutability for
recursive types.
Specialize `StepBy<Range<{integer}>>`
OLD
iter::bench_range_step_by_fold_u16 700.00ns/iter +/- 10.00ns
iter::bench_range_step_by_fold_usize 519.00ns/iter +/- 6.00ns
iter::bench_range_step_by_loop_u32 555.00ns/iter +/- 7.00ns
iter::bench_range_step_by_sum_reducible 37.00ns/iter +/- 0.00ns
NEW
iter::bench_range_step_by_fold_u16 49.00ns/iter +/- 0.00ns
iter::bench_range_step_by_fold_usize 194.00ns/iter +/- 1.00ns
iter::bench_range_step_by_loop_u32 98.00ns/iter +/- 0.00ns
iter::bench_range_step_by_sum_reducible 1.00ns/iter +/- 0.00ns
NEW + `-Ctarget-cpu=x86-64-v3`
iter::bench_range_step_by_fold_u16 22.00ns/iter +/- 0.00ns
iter::bench_range_step_by_fold_usize 80.00ns/iter +/- 1.00ns
iter::bench_range_step_by_loop_u32 41.00ns/iter +/- 0.00ns
iter::bench_range_step_by_sum_reducible 1.00ns/iter +/- 0.00ns
I have only optimized for walltime of those methods, I haven't tested whether it eliminates bounds checks when indexing into slices via things like `(0..slice.len()).step_by(16)`.
slice::from_raw_parts: mention no-wrap-around condition
Cc https://github.com/rust-lang/rust/issues/83996. This probably needs to be mentioned in more places, so I am not closing that issue, but this here should help at least.
For ranges < usize we determine the number of items
StepBy would yield and then store that in the range.end
instead of the actual end. This significantly
simplifies calculation of the loop induction variable
especially in cases where StepBy::step (an usize)
could overflow the Range's item type
Warn on unused `offset_of!()` result
The usage of `core::hint::must_use()` means that we don't get a specialized message. I figured out that since there are plenty of other methods that just have `#[must_use]` with no message it'll be fine, but it is a bit unfortunate that the error mentions `must_use` and not `offset_of!`.
Fixes#111669.
Add `implement_via_object` to `rustc_deny_explicit_impl` to control object candidate assembly
Some built-in traits are special, since they are used to prove facts about the program that are important for later phases of compilation such as codegen and CTFE. For example, the `Unsize` trait is used to assert to the compiler that we are able to unsize a type into another type. It doesn't have any methods because it doesn't actually *instruct* the compiler how to do this unsizing, but this is later used (alongside an exhaustive match of combinations of unsizeable types) during codegen to generate unsize coercion code.
Due to this, these built-in traits are incompatible with the type erasure provided by object types. For example, the existence of `dyn Unsize<T>` does not mean that the compiler is able to unsize `Box<dyn Unsize<T>>` into `Box<T>`, since `Unsize` is a *witness* to the fact that a type can be unsized, and it doesn't actually encode that unsizing operation in its vtable as mentioned above.
The old trait solver gets around this fact by having complex control flow that never considers object bounds for certain built-in traits:
2f896da247/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs (L61-L132)
However, candidate assembly in the new solver is much more lovely, and I'd hate to add this list of opt-out cases into the new solver. Instead of maintaining this complex and hard-coded control flow, instead we can make this a property of the trait via a built-in attribute. We already have such a build attribute that's applied to every single trait that we care about: `rustc_deny_explicit_impl`. This PR adds `implement_via_object` as a meta-item to that attribute that allows us to opt a trait out of object-bound candidate assembly as well.
r? `@lcnr`
Use BorrowFlag instead of explicit isize
The integer type tracking borrow count has a typedef called `BorrowFlag`. This type should be used instead of explicit `isize`.
[doc] `poll_fn`: explain how to `pin` captured state safely
Usage of `Pin::new_unchecked(&mut …)` is dangerous with `poll_fn`, even though the `!Unpin`-infectiousness has made things smoother. Nonetheless, there are easy ways to avoid the need for any `unsafe` altogether, be it through `Box::pin`ning, or the `pin!` macro. Since the latter only works within an `async` context, showing an example artificially introducing one ought to help people navigate this subtlety with safety and confidence.
## Preview
https://user-images.githubusercontent.com/9920355/230092494-da22fdcb-0b8f-4ff4-a2ac-aa7d9ead077a.mov
```@rustbot``` label +A-docs
[libs] Simplify `unchecked_{shl,shr}`
There's no need for the `const_eval_select` dance here. And while I originally wrote the `.try_into().unwrap_unchecked()` implementation here, it's kinda a mess in MIR -- this new one is substantially simpler, as shown by the old one being above the inlining threshold but the new one being below it in the `mir-opt/inline/unchecked_shifts` tests.
We don't need `u32::checked_shl` doing a dance through both `Result` *and* `Option` 🙃
Usage of `Pin::new_unchecked(&mut …)` is dangerous with `poll_fn`, even
though the `!Unpin`-infectiousness has made things smoother.
Nonetheless, there are easy ways to avoid the need for any `unsafe`
altogether, be it through `Box::pin`ning, or the `pin!` macro. Since the
latter only works within an `async` context, showing an example
artifically introducing one ought to help people navigate this subtlety
with safety and confidence.
Launch a non-unwinding panic for misaligned pointer deref
This panic already never unwinds, but that's only because it always hits the unwind guard that's created by our `UnwindAction::Terminate`. Hitting the unwind guard generates a huge double-panic backtrace. Now we generate a normal-looking panic message when this check is hit.
r? `@thomcc`
Correct types in method descriptions of `NonZero*` types
- `$Int`: e.g. i32, usize
- `$Ty`: e.g. NonZeroI32, NonZeroUsize
|method|current description|after my changes|
|-|-|-|
|`saturating_add`|...Return `$Int`::MAX on overflow.|...Return `$Ty`::MAX on overflow.|
|`checked_abs`|...returns None if self == `$Int`::MIN.|...returns None if self == `$Ty`::MIN.|
|`checked_neg`|...returning None if self == i32::MIN.|...returning None if self == `$Ty`::MIN.|
|`saturating_neg`|...returning MAX if self == i32::MIN...|...returning `$Ty`::MAX if self == `$Ty`::MIN...|
|`saturating_mul`|...Return `$Int`::MAX...|...Return `$Ty`::MAX...|
|`saturating_pow`|...Return `$Int`::MIN or `$Int`::MAX...|...Return `$Ty`::MIN or `$Ty`::MAX...|
---
For example:
```rust
pub const fn saturating_neg(self) -> NonZeroI128
```
- current
- Saturating negation. Computes `-self`, returning `MAX` if `self == i32::MIN` instead of overflowing.
- after my changes
- Saturating negation. Computes `-self`, returning `NonZeroI128::MAX` if `self == NonZeroI128::MIN` instead of overflowing.
There's no need for the `const_eval_select` dance here. And while I originally wrote the `.try_into().unwrap_unchecked()` implementation here, it's kinda a mess in MIR -- this new one is substantially simpler, as shown by the old one being above the inlining threshold but the new one being below it.
`#[lang_item]` for `core::ptr::Unique`
Tree Borrows is about to introduce experimental special handling of `core::ptr::Unique` in Miri to give it a semantics.
As of now there does not seem to be a clean way (i.e. other than `&format!("{adt:?}") == "std::ptr::Unique"`) to check if an `AdtDef` represents a `Unique`.
r? `@RalfJung`
Draft: making a lang item
Extend `unused_must_use` to cover block exprs
Given code like
```rust
#[must_use]
fn foo() -> i32 {
42
}
fn warns() {
{
foo();
}
}
fn does_not_warn() {
{
foo()
};
}
fn main() {
warns();
does_not_warn();
}
```
### Before This PR
```
warning: unused return value of `foo` that must be used
--> test.rs:8:9
|
8 | foo();
| ^^^^^
|
= note: `#[warn(unused_must_use)]` on by default
help: use `let _ = ...` to ignore the resulting value
|
8 | let _ = foo();
| +++++++
warning: 1 warning emitted
```
### After This PR
```
warning: unused return value of `foo` that must be used
--> test.rs:8:9
|
8 | foo();
| ^^^^^
|
= note: `#[warn(unused_must_use)]` on by default
help: use `let _ = ...` to ignore the resulting value
|
8 | let _ = foo();
| +++++++
warning: unused return value of `foo` that must be used
--> test.rs:14:9
|
14 | foo()
| ^^^^^
|
help: use `let _ = ...` to ignore the resulting value
|
14 | let _ = foo();
| +++++++ +
warning: 2 warnings emitted
```
Fixes#104253.
This commit reverts a change made in #111425.
It was believed that this change was necessary for implementing type privacy lints, but #111801 showed that it was not necessary.
Quite opposite, the revert fixes some issues.
Mention `env!` in `option_env!`'s docs
`env!` mentions that there is an alternative that returns an `Option<...>` instead of emitting a compile error.
Now `option_env!` also mentions that there is an alternative that emits a compile error instead of returning an `Option<...>`.
Update runtime guarantee for `select_nth_unstable`
#106933 changed the runtime guarantee for `select_nth_unstable` from O(n) to O(n log n), since the old guarantee wasn't actually met by the implementation at the time. Now with #107522, `select_nth_unstable` should be truly linear in runtime, so we can revert its runtime guarantee to O(n). Since #106933 was considered a bug fix, this will probably need an FCP because it counts as a new API guarantee.
r? `@Amanieu`
Ignore `core`, `alloc` and `test` tests that require unwinding on `-C panic=abort`
Some of the tests for `core` and `alloc` require unwinding through their use of `catch_unwind`. These tests fail when testing using `-C panic=abort` (in my case through a target without unwinding support, and `-Z panic-abort-tests`), while they should be ignored as they don't indicate a failure.
This PR marks all of these tests with this attribute:
```rust
#[cfg_attr(not(panic = "unwind"), ignore = "test requires unwinding support")]
```
I'm not aware of a way to test this on rust-lang/rust's CI, as we don't test any target with `-C panic=abort`, but I tested this locally on a Ferrocene target and it does indeed make the test suite pass.
Uplift `clippy::cmp_nan` lint
This PR aims at uplifting the `clippy::cmp_nan` lint into rustc.
## `invalid_nan_comparisons`
~~(deny-by-default)~~ (warn-by-default)
The `invalid_nan_comparisons` lint checks comparison with `f32::NAN` or `f64::NAN` as one of the operand.
### Example
```rust,compile_fail
let a = 2.3f32;
if a == f32::NAN {}
```
### Explanation
NaN does not compare meaningfully to anything – not even itself – so those comparisons are always false.
-----
Mostly followed the instructions for uplifting a clippy lint described here: https://github.com/rust-lang/rust/pull/99696#pullrequestreview-1134072751
`@rustbot` label: +I-lang-nominated
r? compiler
Rollup of 3 pull requests
Successful merges:
- #112260 (Improve document of `unsafe_code` lint)
- #112429 ([rustdoc] List matching impls on type aliases)
- #112442 (Deduplicate identical region constraints in new solver)
r? `@ghost`
`@rustbot` modify labels: rollup
Uplift `clippy::undropped_manually_drops` lint
This PR aims at uplifting the `clippy::undropped_manually_drops` lint.
## `undropped_manually_drops`
(warn-by-default)
The `undropped_manually_drops` lint check for calls to `std::mem::drop` with a value of `std::mem::ManuallyDrop` which doesn't drop.
### Example
```rust
struct S;
drop(std::mem::ManuallyDrop::new(S));
```
### Explanation
`ManuallyDrop` does not drop it's inner value so calling `std::mem::drop` will not drop the inner value of the `ManuallyDrop` either.
-----
Mostly followed the instructions for uplifting an clippy lint described here: https://github.com/rust-lang/rust/pull/99696#pullrequestreview-1134072751
`@rustbot` label: +I-lang-nominated
r? compiler
-----
For Clippy:
changelog: Moves: Uplifted `clippy::undropped_manually_drops` into rustc
Add `task::Waker::noop`
I have found myself reimplementing this function many times when I need a `Context` but don't have a runtime or `futures` to hand.
Prior art: [`futures::task::noop_waker`](https://docs.rs/futures/0.3/futures/task/fn.noop_waker.html) and [`futures::task::noop_waker_ref`](https://docs.rs/futures/0.3/futures/task/fn.noop_waker_ref.html)
Tracking issue: https://github.com/rust-lang/rust/issues/98286
Unresolved questions:
1. Should we also add `RawWaker::noop()`? (I don't think so, I can't think of a use case for it)
2. Should we also add `Context::noop()`? Depending on the future direction `Context` goes a "noop context" might not even make sense in future.
3. Should it be an associated constant instead? That would allow for `let cx = &mut Context::from_waker(&Waker::NOOP);` to work on one line which is pretty nice. I don't really know what the guideline is here.
r? rust-lang/libs-api `@rustbot` label +T-libs-api -T-libs
- Switch TypeId to 128 bits
- Hack around the fact that tracing-subscriber dislikes how TypeId is hashed
- Remove lowering of type_id128 from rustc_codegen_llvm
- Remove unnecessary `type_id128` intrinsic (just change return type of `type_id`)
- Only hash the lower 64 bits of the TypeId
- Reword comment
add `#[doc(alias="flatmap")]` to `Option::and_then`
I keep forgetting that rust calls this `and_then` and trying to search for `flatmap`. `and_then`'s docs even mention "Some languages call this operation flatmap", but it doesn't show up as a result in the search at `https://doc.rust-lang.org/std/?search=flatmap`
Option::map_or_else: Show an example of integrating with Result
Moving this from https://github.com/rust-lang/libs-team/issues/59 where an API addition was rejected. But I think it's valuable to add this example to the documentation at least.
remove reference to Into in ? operator core/std docs, fix#111655
remove the text stating that `?` uses `Into::into` and add text stating it uses `From::from` instead. This closes#111655.
Uplift `clippy::cast_ref_to_mut` lint
This PR aims at uplifting the `clippy::cast_ref_to_mut` lint into rustc.
## `cast_ref_to_mut`
(deny-by-default)
The `cast_ref_to_mut` lint checks for casts of `&T` to `&mut T` without using interior mutability.
### Example
```rust,compile_fail
fn x(r: &i32) {
unsafe {
*(r as *const i32 as *mut i32) += 1;
}
}
```
### Explanation
Casting `&T` to `&mut T` without interior mutability is undefined behavior, as it's a violation of Rust reference aliasing requirements.
-----
Mostly followed the instructions for uplifting a clippy lint described here: https://github.com/rust-lang/rust/pull/99696#pullrequestreview-1134072751
`@rustbot` label: +I-lang-nominated
r? compiler
-----
For Clippy:
changelog: Moves: Uplifted `clippy::cast_ref_to_mut` into rustc
Uplift `clippy::invalid_utf8_in_unchecked` lint
This PR aims at uplifting the `clippy::invalid_utf8_in_unchecked` lint into two lints.
## `invalid_from_utf8_unchecked`
(deny-by-default)
The `invalid_from_utf8_unchecked` lint checks for calls to `std::str::from_utf8_unchecked` and `std::str::from_utf8_unchecked_mut` with an invalid UTF-8 literal.
### Example
```rust
unsafe {
std::str::from_utf8_unchecked(b"cl\x82ippy");
}
```
### Explanation
Creating such a `str` would result in undefined behavior as per documentation for `std::str::from_utf8_unchecked` and `std::str::from_utf8_unchecked_mut`.
## `invalid_from_utf8`
(warn-by-default)
The `invalid_from_utf8` lint checks for calls to `std::str::from_utf8` and `std::str::from_utf8_mut` with an invalid UTF-8 literal.
### Example
```rust
std::str::from_utf8(b"ru\x82st");
```
### Explanation
Trying to create such a `str` would always return an error as per documentation for `std::str::from_utf8` and `std::str::from_utf8_mut`.
-----
Mostly followed the instructions for uplifting a clippy lint described here: https://github.com/rust-lang/rust/pull/99696#pullrequestreview-1134072751
````@rustbot```` label: +I-lang-nominated
r? compiler
-----
For Clippy:
changelog: Moves: Uplifted `clippy::invalid_utf8_in_unchecked` into rustc
`[T; N]::zip` is "eager" but most zips are mapped.
This causes poor optimization in generated code.
This is a fundamental design issue and "zip" is
"prime real estate" in terms of function names,
so let's free it up again.
All the implementations of the trait already are `Copy`, and this seems to be enough to simplify the implementations enough to make the MIR inliner willing to inline basics like `Range::next`.
Fix docs for `alloc::realloc`
Fixes#108546.
Corrects the docs for `alloc::realloc` to bring the safety constraints into line with `Layout::from_size_align_unchecked`'s constraints.
Rollup of 6 pull requests
Successful merges:
- #111936 (Include test suite metadata in the build metrics)
- #111952 (Remove DesugaringKind::Replace.)
- #111966 (Add #[inline] to array TryFrom impls)
- #111983 (Perform MIR type ops locally in new solver)
- #111997 (Fix re-export of doc hidden macro not showing up)
- #112014 (rustdoc: get unnormalized link destination for suggestions)
r? `@ghost`
`@rustbot` modify labels: rollup
Add #[inline] to array TryFrom impls
I was looking into https://github.com/rust-lang/rust/issues/111959 and I realized we don't have these. They seem like an uncontroversial addition.
IMO this PR does not fix that issue. I think the bad codegen is being caused by some underlying deeper problem but this change might cause the MIR inliner to paper over it in this specific case.
r? `@thomcc`
Update current implementation comments for `select_nth_unstable`
This more accurately reflects the actual implementation, as it hasn't been a simple quickselect since #106997. While it does say that the current implementation always runs in O(n), I don't think it should require an FCP as it doesn't guarantee linearity in general and only points out that the current implementation is in fact linear.
r? `@Amanieu`
Add Median of Medians fallback to introselect
Fixes#102451.
This PR is a follow up to #106997. It adds a Fast Deterministic Selection implementation as a fallback to the introselect algorithm used by `select_nth_unstable`. This allows it to guarantee O(n) worst case running time, while maintaining good performance in all cases.
This would fix#102451, which was opened because the `select_nth_unstable` docs falsely claimed that it had O(n) worst case performance, even though it was actually quadratic in the worst case. #106997 improved the worst case complexity to O(n log n) by using heapsort as a fallback, and this PR further improves it to O(n) (this would also make #106933 unnecessary).
It also improves the actual runtime if the fallback gets called: Using a pathological input of size `1 << 19` (see the playground link in #102451), calculating the median is roughly 3x faster using fast deterministic selection as a fallback than it is using heapsort.
The downside to this is less code reuse between the sorting and selection algorithms, but I don't think it's that bad. The additional algorithms are ~250 LOC with no `unsafe` blocks (I tried using unsafe to avoid bounds checks but it didn't noticeably improve the performance).
I also let it fuzz for a while against the current `select_nth_unstable` implementation to ensure correctness, and it seems to still fulfill all the necessary postconditions.
cc `@scottmcm` who reviewed #106997
[rustc_ty_utils] Treat `drop_in_place`'s *mut argument like &mut when adding LLVM attributes
This resurrects PR #103614, which has sat idle for a while.
This could probably use a new perf run, since we're on a new LLVM version now.
r? `@oli-obk`
cc `@RalfJung`
---
LLVM can make use of the `noalias` parameter attribute on the parameter to `drop_in_place` in areas like argument promotion. Because the Rust compiler fully controls the code for `drop_in_place`, it can soundly deduce parameter attributes on it.
In #103957, Miri was changed to retag `drop_in_place`'s argument as if it was `&mut`, matching this change.
Give better error when collecting into `&[T]`
The detection of slice reference of `{integral}` in `rustc_on_unimplemented` is hacky, but a proper solution requires changing `FmtPrinter` to add a parameter to print integers as `{integral}` and I didn't want to change it just for `rustc_on_unimplemented`. I can do that if requested, though.
I'm open to better wording; this is the best I could come up with.
Mark internal functions and traits unsafe to reflect preconditions
No semantics are changed in this PR; I only mark some functions and and a trait `unsafe` which already had implicit preconditions. Although it seems somewhat redundant for `numfmt::Part::Copy` to contain a `&[u8]` instead of a `&str`, given that all of its current consumers ultimately expect valid UTF-8. Is the type also intended to work for byte-slice formatting in the future?
Document `Pin` memory layout
The fact that `Pin` is `#[repr(transparent)]` technically isn't documented anywhere currently. I don't see any reason why `Pin`'s layout would ever change, so this PR codifies it.
`@rustbot` label +T-libs-api -T-libs +A-docs +A-layout +A-pin
Don't use inner macro in `marker_impls`
Just recurse instead of having to define an inner macro to avoid the problem with expansion binders being misnumbered between the `$meta` and `$T` variables.
cc `@Veykril` this should fixrust-lang/rust-analyzer#14862 since we've gotten rid of the inner macro.
don't skip inference for type in `offset_of!`
Fixes https://github.com/rust-lang/rust/issues/111678 by no longer skipping inference on the type in `offset_of!`. Simply erasing the regions the during writeback isn't enough and can cause ICEs. A test case for this is included.
This reverts https://github.com/rust-lang/rust/pull/111661, because it becomes redundant, since inference already erases the regions.
Use code with reliable branchless code-gen for slice::sort merge
The recent LLVM 16 update changes code-gen to be not branchless anymore, in the slice::sort implementation merge function. This improves performance by 30% for random patterns, restoring the performance to the state with LLVM 15.
Fixes#111559
Rollup of 10 pull requests
Successful merges:
- #111491 (Dont check `must_use` on nested `impl Future` from fn)
- #111606 (very minor cleanups)
- #111619 (Add timings for MIR passes to profiling report)
- #111652 (Better diagnostic for `use Self::..`)
- #111665 (Add more tests for the offset_of macro)
- #111708 (Give a more useful location for where a span_bug was delayed)
- #111715 (Fix doc comment for `ConstParamTy` derive)
- #111723 (style: do not overwrite obligations)
- #111743 (Improve cgu merging debug output)
- #111762 (fix: emit error when fragment is `MethodReceiverExpr` and items is empty)
r? `@ghost`
`@rustbot` modify labels: rollup
Add more tests for the offset_of macro
Implements what I [suggested in the tracking issue](https://github.com/rust-lang/rust/issues/106655#issuecomment-1535007205), plus some further improvements:
* ensuring that offset_of!(Self, ...) works iff inside an impl block
* ensuring that the output type is usize and doesn't coerce. this can be changed in the future, but if it is done, it should be a conscious decision
* improving the privacy checking test
* ensuring that generics don't let you escape the unsized check
r? `````@WaffleLapkin`````
`ascii::Char`-ify the escaping code in `core`
This means that `EscapeIterInner::as_str` no longer needs unsafe code, because the type system ensures the internal buffer is only ASCII, and thus valid UTF-8.
Come to think of it, this also gives it a (non-guaranteed) niche.
cc `@BurntSushi` as potentially interested
`ascii::Char` tracking issue: #110998
Shorten even more panic temporary lifetimes
Followup to #104134. As pointed out by `@bjorn3` in https://github.com/rust-lang/rust/pull/104134#pullrequestreview-1425585948, there are other cases in the panic macros which would also benefit from dropping their non-Send temporaries as soon as possible, avoiding pointlessly holding them across an await point.
For the tests added in this PR, here are the failures you get today on master without the macro changes in this PR:
<details>
<summary>tests/ui/macros/panic-temporaries-2018.rs</summary>
```console
error: future cannot be sent between threads safely
--> tests/ui/macros/panic-temporaries-2018.rs:52:18
|
LL | require_send(panic_display());
| ^^^^^^^^^^^^^^^ future returned by `panic_display` is not `Send`
|
= help: within `impl Future<Output = ()>`, the trait `Send` is not implemented for `*const u8`
note: future is not `Send` as this value is used across an await
--> tests/ui/macros/panic-temporaries-2018.rs:35:31
|
LL | f(panic!("{}", NOT_SEND)).await;
| -------- ^^^^^- `NOT_SEND` is later dropped here
| | |
| | await occurs here, with `NOT_SEND` maybe used later
| has type `NotSend` which is not `Send`
note: required by a bound in `require_send`
--> tests/ui/macros/panic-temporaries-2018.rs:48:25
|
LL | fn require_send(_: impl Send) {}
| ^^^^ required by this bound in `require_send`
error: future cannot be sent between threads safely
--> tests/ui/macros/panic-temporaries-2018.rs:52:18
|
LL | require_send(panic_display());
| ^^^^^^^^^^^^^^^ future returned by `panic_display` is not `Send`
|
= help: within `NotSend`, the trait `Sync` is not implemented for `*const u8`
note: future is not `Send` as this value is used across an await
--> tests/ui/macros/panic-temporaries-2018.rs:35:31
|
LL | f(panic!("{}", NOT_SEND)).await;
| ---------------------- ^^^^^- the value is later dropped here
| | |
| | await occurs here, with the value maybe used later
| has type `&NotSend` which is not `Send`
note: required by a bound in `require_send`
--> tests/ui/macros/panic-temporaries-2018.rs:48:25
|
LL | fn require_send(_: impl Send) {}
| ^^^^ required by this bound in `require_send`
error: future cannot be sent between threads safely
--> tests/ui/macros/panic-temporaries-2018.rs:53:18
|
LL | require_send(panic_str());
| ^^^^^^^^^^^ future returned by `panic_str` is not `Send`
|
= help: within `impl Future<Output = ()>`, the trait `Send` is not implemented for `*const u8`
note: future is not `Send` as this value is used across an await
--> tests/ui/macros/panic-temporaries-2018.rs:40:36
|
LL | f(panic!((NOT_SEND, "...").1)).await;
| -------- ^^^^^- `NOT_SEND` is later dropped here
| | |
| | await occurs here, with `NOT_SEND` maybe used later
| has type `NotSend` which is not `Send`
note: required by a bound in `require_send`
--> tests/ui/macros/panic-temporaries-2018.rs:48:25
|
LL | fn require_send(_: impl Send) {}
| ^^^^ required by this bound in `require_send`
error: future cannot be sent between threads safely
--> tests/ui/macros/panic-temporaries-2018.rs:54:18
|
LL | require_send(unreachable_display());
| ^^^^^^^^^^^^^^^^^^^^^ future returned by `unreachable_display` is not `Send`
|
= help: within `impl Future<Output = ()>`, the trait `Send` is not implemented for `*const u8`
note: future is not `Send` as this value is used across an await
--> tests/ui/macros/panic-temporaries-2018.rs:45:31
|
LL | f(unreachable!(NOT_SEND)).await;
| -------- ^^^^^- `NOT_SEND` is later dropped here
| | |
| | await occurs here, with `NOT_SEND` maybe used later
| has type `NotSend` which is not `Send`
note: required by a bound in `require_send`
--> tests/ui/macros/panic-temporaries-2018.rs:48:25
|
LL | fn require_send(_: impl Send) {}
| ^^^^ required by this bound in `require_send`
error: future cannot be sent between threads safely
--> tests/ui/macros/panic-temporaries-2018.rs:54:18
|
LL | require_send(unreachable_display());
| ^^^^^^^^^^^^^^^^^^^^^ future returned by `unreachable_display` is not `Send`
|
= help: within `NotSend`, the trait `Sync` is not implemented for `*const u8`
note: future is not `Send` as this value is used across an await
--> tests/ui/macros/panic-temporaries-2018.rs:45:31
|
LL | f(unreachable!(NOT_SEND)).await;
| ---------------------- ^^^^^- the value is later dropped here
| | |
| | await occurs here, with the value maybe used later
| has type `&NotSend` which is not `Send`
note: required by a bound in `require_send`
--> tests/ui/macros/panic-temporaries-2018.rs:48:25
|
LL | fn require_send(_: impl Send) {}
| ^^^^ required by this bound in `require_send`
error: aborting due to 5 previous errors
```
</details>
<details>
<summary>tests/ui/macros/panic-temporaries.rs</summary>
```console
error: future cannot be sent between threads safely
--> tests/ui/macros/panic-temporaries.rs:42:18
|
LL | require_send(panic_display());
| ^^^^^^^^^^^^^^^ future returned by `panic_display` is not `Send`
|
= help: within `impl Future<Output = ()>`, the trait `Send` is not implemented for `*const u8`
note: future is not `Send` as this value is used across an await
--> tests/ui/macros/panic-temporaries.rs:35:31
|
LL | f(panic!("{}", NOT_SEND)).await;
| -------- ^^^^^- `NOT_SEND` is later dropped here
| | |
| | await occurs here, with `NOT_SEND` maybe used later
| has type `NotSend` which is not `Send`
note: required by a bound in `require_send`
--> tests/ui/macros/panic-temporaries.rs:38:25
|
LL | fn require_send(_: impl Send) {}
| ^^^^ required by this bound in `require_send`
error: future cannot be sent between threads safely
--> tests/ui/macros/panic-temporaries.rs:42:18
|
LL | require_send(panic_display());
| ^^^^^^^^^^^^^^^ future returned by `panic_display` is not `Send`
|
= help: within `NotSend`, the trait `Sync` is not implemented for `*const u8`
note: future is not `Send` as this value is used across an await
--> tests/ui/macros/panic-temporaries.rs:35:31
|
LL | f(panic!("{}", NOT_SEND)).await;
| ---------------------- ^^^^^- the value is later dropped here
| | |
| | await occurs here, with the value maybe used later
| has type `&NotSend` which is not `Send`
note: required by a bound in `require_send`
--> tests/ui/macros/panic-temporaries.rs:38:25
|
LL | fn require_send(_: impl Send) {}
| ^^^^ required by this bound in `require_send`
error: aborting due to 2 previous errors
```
</details>
r? bjorn3
* ensuring that offset_of!(Self, ...) works iff inside an impl block
* ensuring that the output type is usize and doesn't coerce. this can be
changed in the future, but if it is done, it should be a conscious descision
* improving the privacy checking test
* ensuring that generics don't let you escape the unsized check
Add a conversion from `&mut T` to `&mut UnsafeCell<T>`
Provides a safe way of downgrading an exclusive reference into an alias-able `&UnsafeCell<T>` reference.
ACP: https://github.com/rust-lang/libs-team/issues/198.
The recent LLVM 16 update changes code-gen to be not branchless anymore, in the
slice::sort implementation merge function. This improves performance by 30% for
random patterns, restoring the performance to the state with LLVM 15.
Fix some misleading and copy-pasted `Pattern` examples
These examples were listed twice and also were confusable with doing a substring match instead of a any-of-set match.