Now that error counts can't go up and down due to stashing/stealing, we
have a nice property:
(err_count > 0) iff (an ErrorGuaranteed has been produced)
So we can now record `ErrorGuaranteed`s within `DiagCtxt` and use that
in methods like `has_error`, instead of checking that the count is
greater than 0 and calling `unchecked_error_guaranteed` to create the
`ErrorGuaranteed`.
In fact, we can record a `Vec<ErrorGuaranteed>` and use its length to
count the number, instead of maintaining a separate count.
Suppress suggestions in derive macro
close#118809
I suppress warnings inside derive macros.
For example, the compiler emits following error by a program described in https://github.com/rust-lang/rust/issues/118809#issuecomment-1852256687 with a suggestion that indicates invalid syntax.
```
error[E0308]: `?` operator has incompatible types
--> src/main.rs:3:17
|
3 | #[derive(Debug, Deserialize)]
| ^^^^^^^^^^^ expected `u32`, found `u64`
|
= note: `?` operator cannot convert from `u64` to `u32`
= note: this error originates in the derive macro `Deserialize` (in Nightly builds, run with -Z macro-backtrace for more info)
help: you can convert a `u64` to a `u32` and panic if the converted value doesn't fit
|
3 | #[derive(Debug, Deserialize.try_into().unwrap())]
| ++++++++++++++++++++
For more information about this error, try `rustc --explain E0308`.
error: could not compile `serde_test` (bin "serde_test") due to 2 previous errors
```
In this PR, suggestions to cast are suppressed.
```
error[E0308]: `?` operator has incompatible types
--> src/main.rs:3:17
|
3 | #[derive(Debug, Deserialize)]
| ^^^^^^^^^^^ expected `u32`, found `u64`
|
= note: `?` operator cannot convert from `u64` to `u32`
= note: this error originates in the derive macro `Deserialize` (in Nightly builds, run with -Z macro-backtrace for more info)
For more information about this error, try `rustc --explain E0308`.
error: could not compile `serde_test` (bin "serde_test") due to 2 previous errors
```
These crates all needed specialization for `newtype_index!`, which will no
longer be necessary when the current nightly eventually becomes the next
bootstrap compiler.
Fix `ErrorGuaranteed` unsoundness with stash/steal.
When you stash an error, the error count is incremented. You can then use the non-zero error count to get an `ErrorGuaranteed`. You can then steal the error, which decrements the error count. You can then cancel the error.
Example code:
```
fn unsound(dcx: &DiagCtxt) -> ErrorGuaranteed {
let sp = rustc_span::DUMMY_SP;
let k = rustc_errors::StashKey::Cycle;
dcx.struct_err("bogus").stash(sp, k); // increment error count on stash
let guar = dcx.has_errors().unwrap(); // ErrorGuaranteed from error count > 0
let err = dcx.steal_diagnostic(sp, k).unwrap(); // decrement error count on steal
err.cancel(); // cancel error
guar // ErrorGuaranteed with no error emitted!
}
```
This commit fixes the problem in the simplest way: by not counting stashed errors in `DiagCtxt::{err_count,has_errors}`.
However, just doing this without any other changes leads to over 40 ui test failures. Mostly because of uninteresting extra errors (many saying "type annotations needed" when type inference fails), and in a few cases, due to delayed bugs causing ICEs when no normal errors are printed.
To fix these, this commit adds `DiagCtxt::stashed_err_count`, and uses it in three places alongside `DiagCtxt::{has_errors,err_count}`. It's dodgy to rely on it, because unlike `DiagCtxt::err_count` it can go up and down. But it's needed to preserve existing behaviour, and at least the three places that need it are now obvious.
r? oli-obk
Invert diagnostic lints.
That is, change `diagnostic_outside_of_impl` and `untranslatable_diagnostic` from `allow` to `deny`, because more than half of the compiler has been converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow` attributes, which proves that this change is warranted.
r? ````@davidtwco````
When you stash an error, the error count is incremented. You can then
use the non-zero error count to get an `ErrorGuaranteed`. You can then
steal the error, which decrements the error count. You can then cancel
the error.
Example code:
```
fn unsound(dcx: &DiagCtxt) -> ErrorGuaranteed {
let sp = rustc_span::DUMMY_SP;
let k = rustc_errors::StashKey::Cycle;
dcx.struct_err("bogus").stash(sp, k); // increment error count on stash
let guar = dcx.has_errors().unwrap(); // ErrorGuaranteed from error count > 0
let err = dcx.steal_diagnostic(sp, k).unwrap(); // decrement error count on steal
err.cancel(); // cancel error
guar // ErrorGuaranteed with no error emitted!
}
```
This commit fixes the problem in the simplest way: by not counting
stashed errors in `DiagCtxt::{err_count,has_errors}`.
However, just doing this without any other changes leads to over 40 ui
test failures. Mostly because of uninteresting extra errors (many saying
"type annotations needed" when type inference fails), and in a few
cases, due to delayed bugs causing ICEs when no normal errors are
printed.
To fix these, this commit adds `DiagCtxt::stashed_err_count`, and uses
it in three places alongside `DiagCtxt::{has_errors,err_count}`. It's
dodgy to rely on it, because unlike `DiagCtxt::err_count` it can go up
and down. But it's needed to preserve existing behaviour, and at least
the three places that need it are now obvious.
- In `emit_producing_error_guaranteed`, only allow `Level::Error`.
- In `emit_diagnostic`, only produce `ErrorGuaranteed` for `Level` and
`DelayedBug`. (Not `Bug` or `Fatal`. They don't need it, because the
relevant `emit` methods abort.)
- Add/update various comments.
Some cleanups around diagnostic levels.
Plus some refactoring in and around diagnostic levels and emission. Details in the individual commit logs.
r? ````@oli-obk````
That is, change `diagnostic_outside_of_impl` and
`untranslatable_diagnostic` from `allow` to `deny`, because more than
half of the compiler has be converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow`
attributes, which proves that this change is warranted.
All the other `emit`/`emit_diagnostic` methods were recently made
consuming (e.g. #119606), but this one wasn't. But it makes sense to.
Much of this is straightforward, and lots of `clone` calls are avoided.
There are a couple of tricky bits.
- `Emitter::primary_span_formatted` no longer takes a `Diagnostic` and
returns a pair. Instead it takes the two fields from `Diagnostic` that
it used (`span` and `suggestions`) as `&mut`, and modifies them. This
is necessary to avoid the cloning of `diag.children` in two emitters.
- `from_errors_diagnostic` is rearranged so various uses of `diag` occur
before the consuming `emit_diagnostic` call.
The two kinds of delayed bug have quite different semantics so a
stronger conceptual separation is nice. (`is_error` is a good example,
because the two kinds have different behaviour.)
The commit also moves the `DelayedBug` variant after `Error` in `Level`,
to reflect the fact that it's weaker than `Error` -- it might trigger an
error but also might not. (The pre-existing `downgrade_to_delayed_bug`
function also reflects the notion that delayed bugs are lower/after
normal errors.)
Plus it condenses some of the comments on `Level` into a table, for
easier reading, and introduces `can_be_top_or_sub` to indicate which
levels can be used in top-level diagnostics vs. subdiagnostics.
Finally, it renames `DiagCtxtInner::span_delayed_bugs` as
`DiagCtxtInner::delayed_bugs`. The `span_` prefix is unnecessary because
some delayed bugs don't have a span.
- Combine two different blocks involving
`diagnostic.level.get_expectation_id()` into one.
- Combine several `if`s involving `diagnostic.level` into a single
`match`.
This requires reordering some of the operations, but this has no
functional effect.
It doesn't affect behaviour, but makes sense with (a) `FailureNote` having
`()` as its emission guarantee, and (b) in `Level` the `is_error` levels
now are all listed before the non-`is_error` levels.
Remove `BorrowckErrors::tainted_by_errors`
This PR removes one of the `tainted_by_errors` occurrences, replacing it with direct use of `ErrorGuaranteed`.
r? `@oli-obk`
`emit_future_breakage` calls
`self.dcx().take_future_breakage_diagnostics()` and then passes the
result to `self.dcx().emit_future_breakage_report(diags)`. This commit
removes the first of these and lets `emit_future_breakage_report` do the
taking.
It also inlines and removes what is left of `emit_future_breakage`,
which has a single call site.
- `emitted_at` isn't used outside the crate.
- `code` and `messages` are public fields, so there's no point have
trivial getters/setters for them.
- `suggestions` is public, so the comment about "functionality on
`Diagnostic`" isn't needed.
When there are two possibilities, both of which use a `String`, it's
nicer to use a struct than an enum. Especially when mapping the contents
into a tuple.
It contains an `i128`, but when creating them we convert any number
outside the range -100..100 to a string, because Fluent uses an `f64`.
It's all a bit strange.
This commit changes the `i128` to an `i32`, which fits safely in
Fluent's `f64`, and removes the -100..100 range check. This means that
only integers outside the range of `i32` will be converted to strings.
`Diagnostic::keys`, which is used for hashing and equating diagnostics,
has a surprising behaviour: it ignores children, but only for lints.
This was added in #88493 to fix some duplicated diagnostics, but it
doesn't seem necessary any more.
This commit removes the special case and only four tests have changed
output, with additional errors. And those additional errors aren't
exact duplicates, they're just similar. For example, in
src/tools/clippy/tests/ui/same_name_method.rs we currently have this
error:
```
error: method's name is the same as an existing method in a trait
--> $DIR/same_name_method.rs:75:13
|
LL | fn foo() {}
| ^^^^^^^^^^^
|
note: existing `foo` defined here
--> $DIR/same_name_method.rs:79:9
|
LL | impl T1 for S {}
| ^^^^^^^^^^^^^^^^
```
and with this change we also get this error:
```
error: method's name is the same as an existing method in a trait
--> $DIR/same_name_method.rs:75:13
|
LL | fn foo() {}
| ^^^^^^^^^^^
|
note: existing `foo` defined here
--> $DIR/same_name_method.rs:81:9
|
LL | impl T2 for S {}
| ^^^^^^^^^^^^^^^^
```
I think printing this second argument is reasonable, possibly even
preferable to hiding it. And the other cases are similar.
Suppress unhelpful diagnostics for unresolved top level attributes
Fixes#118455, unresolved top level attribute error didn't imported prelude and already have emitted an error, report builtin macro and attributes error by the way, so `check_invalid_crate_level_attr` in can ignore them.
Also fixes#89566, fixes#67107.
r? `@petrochenkov`
Because it's almost always static.
This makes `impl IntoDiagnosticArg for DiagnosticArgValue` trivial,
which is nice.
There are a few diagnostics constructed in
`compiler/rustc_mir_build/src/check_unsafety.rs` and
`compiler/rustc_mir_transform/src/errors.rs` that now need symbols
converted to `String` with `to_string` instead of `&str` with `as_str`,
but that' no big deal, and worth it for the simplifications elsewhere.
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.