array docs - advertise how to get array from slice
On my first Rust project, I spent more time than I care to admit figuring out how to efficiently get an array from a slice. Update the array documentation to explain this a bit more clearly.
(As a side note, it's a bit unfortunate that get-array-from-slice is only available via trait since that means it can't be used from const functions yet.)
Constify impl Fn* &(mut) Fn*
Tracking Issue: [101803](https://github.com/rust-lang/rust/issues/101803)
Feature gate: `#![feature(const_fn_trait_ref_impls)]`
This feature allows using references to Fn* Items as Fn* Items themself in a const context.
Fix naming format of IEEE 754 standard
Currently the documentation of f64::min refers to "IEEE-754 2008" while the documentation of f64::minimum refers to "IEEE 754-2019".
Note that one has the format IEEE,hyphen,number,space,year while the other is IEEE,space,number,hyphen,year. The official IEEE site [1] uses the later format and it is also the one most commonly used throughout the codebase.
Update all comments and - more importantly - documentation to consistently use the official format.
[1] https://standards.ieee.org/ieee/754/4211/
On my first Rust project, I spent more time than I care to admit
figuring out how to efficiently get an array from a slice. Update the
array documentation to explain this a bit more clearly.
(As a side note, it's a bit unfortunate that get-array-from-slice is
only available via trait since that means it can't be used from const
functions yet.)
Currently the documentation of f64::min refers to "IEEE-754 2008" while the documentation of
f64::minimum refers to "IEEE 754-2019".
Note that one has the format IEEE,hyphen,number,space,year while the other is
IEEE,space,number,hyphen,year. The official IEEE site [1] uses the later format and it is also the
one most commonly used throughout the codebase.
Update all comments and - more importantly - documentation to consistently use the official format.
[1] https://standards.ieee.org/ieee/754/4211/
The `<*const T>::guaranteed_*` methods now return an option for the unknown case
cc https://github.com/rust-lang/rust/issues/53020#issuecomment-1236932443
I chose `0` for "not equal" and `1` for "equal" and left `2` for the unknown case so backends can just forward to raw pointer equality and it works ✨
r? `@fee1-dead` or `@lcnr`
cc `@rust-lang/wg-const-eval`
Fix the example code and doctest for Formatter::sign_plus
The provided example to the `sign_plus` method on `fmt` was broken, it displays the `-` sign twice for negative numbers.
This pull request should fix the issue by `.abs()` ing the number so that the negative sign appears only once. It is just one possible solution to the issue, not sure if it's the best. However, this one will behave as expected when combined with fill and alignment operators.
Compile spin_loop_hint as pause on x86 even without sse2 enabled
The x86 `pause` instruction was introduced with sse2, but because it is encoded as `rep nop`, it works just fine on cpu's without sse2 support. It just doesn't do anything.
Tweak future opaque ty pretty printing
1. The `Return` type of a generator doesn't need to be a lang item just for diagnostic printing of types
2. We shouldn't suppress the `Output = Ty` of a opaque future if the type is a int or float var.
Reimplement `carrying_add` and `borrowing_sub` for signed integers.
As per the discussion in #85532, this PR reimplements `carrying_add` and `borrowing_sub` for signed integers.
It also adds unit tests for both unsigned and signed integers, emphasing on the behaviours of the methods.
The x86 `pause` instruction was introduced with sse2, but because it is encoded as `rep nop`, it works just fine on cpu's without sse2 support. It just doesn't do anything.
Document eager evaluation of `bool::then_some` argument
I encountered this earlier today and thought maybe `bool::then_some` could use a little addition to the documentation.
It's pretty obvious with familiarity and from looking at the implementation, but the argument for `then_some` is eagerly evaluated, which means if you do the following (as I did), you can have a problem:
```rust
// Oops!
let _ = something
.has_another_thing()
.then_some(something.another_thing_or_panic());
```
A note, similar to other methods with eagerly-evaluated arguments and a lazy alternative (`Option::or`, for example), could help point this out to people who forget (like me)!
Make `const_eval_select` a real intrinsic
This fixes issues where `track_caller` functions do not have nice panic
messages anymore when there is a call to the function, and uses the
MIR system to replace the call instead of dispatching via lang items.
Fixes#100696.
safe transmute: use `Assume` struct to provide analysis options
This task was left as a TODO in #92268; resolving it brings [`BikeshedIntrinsicFrom`](https://doc.rust-lang.org/nightly/core/mem/trait.BikeshedIntrinsicFrom.html) more in line with the API defined in [MCP411](https://github.com/rust-lang/compiler-team/issues/411).
**Before:**
```rust
pub unsafe trait BikeshedIntrinsicFrom<
Src,
Context,
const ASSUME_ALIGNMENT: bool,
const ASSUME_LIFETIMES: bool,
const ASSUME_VALIDITY: bool,
const ASSUME_VISIBILITY: bool,
> where
Src: ?Sized,
{}
```
**After:**
```rust
pub unsafe trait BikeshedIntrinsicFrom<Src, Context, const ASSUME: Assume = { Assume::NOTHING }>
where
Src: ?Sized,
{}
```
`Assume::visibility` has also been renamed to `Assume::safety`, as library safety invariants are what's actually being assumed; visibility is just the mechanism by which it is currently checked (and that may change).
r? `@oli-obk`
---
Related:
- https://github.com/rust-lang/compiler-team/issues/411
- https://github.com/rust-lang/rust/issues/99571
Fix a bunch of typo
This PR will fix some typos detected by [typos].
I only picked the ones I was sure were spelling errors to fix, mostly in
the comments.
[typos]: https://github.com/crate-ci/typos
This PR will fix some typos detected by [typos].
I only picked the ones I was sure were spelling errors to fix, mostly in
the comments.
[typos]: https://github.com/crate-ci/typos
Before, the text simply asked people to use a symbol which is hard to
search for. Now the text links back to the chapter on error
propagation in The Book. That should help people find the relevant
keywords for further searches.
Strengthen invalid_value lint to forbid uninit primitives, adjust docs to say that's UB
For context: https://github.com/rust-lang/rust/issues/66151#issuecomment-1174477404=
This does not make it a FCW, but it does explicitly state in the docs that uninit integers are UB.
This also doesn't affect any runtime behavior, uninit u32's will still successfully be created through mem::uninitialized.
Rollup of 7 pull requests
Successful merges:
- #100898 (Do not report too many expr field candidates)
- #101056 (Add the syntax of references to their documentation summary.)
- #101106 (Rustdoc-Json: Retain Stripped Modules when they are imported, not when they have items)
- #101131 (CTFE: exposing pointers and calling extern fn is just impossible)
- #101141 (Simplify `get_trait_ref` fn used for `virtual_function_elimination`)
- #101146 (Various changes to logging of borrowck-related code)
- #101156 (Remove `Sync` requirement from lint pass objects)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Add the syntax of references to their documentation summary.
Without this change, in <https://doc.rust-lang.org/1.63.0/std/#primitives>, `reference` is the only entry in that list which does not contain the syntax by which the type is named in source code. With this change, it contains them, in roughly the same way as the `pointer` entry does.
Make use of `[wrapping_]byte_{add,sub}`
These new methods trivially replace old `.cast().wrapping_offset().cast()` & similar code.
Note that [`arith_offset`](https://doc.rust-lang.org/std/intrinsics/fn.arith_offset.html) and `wrapping_offset` are the same thing.
r? ``@scottmcm``
_split off from #100746_
Add next_up and next_down for f32/f64 - take 2
This is a revival of https://github.com/rust-lang/rust/pull/88728 which staled due to inactivity of the original author. I've address the last review comment.
---
This is a pull request implementing the features described at https://github.com/rust-lang/rfcs/pull/3173.
`@rustbot` label +T-libs-api -T-libs
r? `@scottmcm`
cc `@orlp`
Some papercuts on error::Error
Renames the chain method, since I chain could mean anything and doesn't refer to a chain of sources (cc #58520) (and adds a comment explaining why sources is not a provided method on Error). Renames arguments to the request method from `req` to `demand` since the type is `Demand` rather than Request or Requisition.
r? ``@yaahc``
Add pointer masking convenience functions
This PR adds the following public API:
```rust
impl<T: ?Sized> *const T {
fn mask(self, mask: usize) -> *const T;
}
impl<T: ?Sized> *mut T {
fn mask(self, mask: usize) -> *const T;
}
// mod intrinsics
fn mask<T>(ptr: *const T, mask: usize) -> *const T
```
This is equivalent to `ptr.map_addr(|a| a & mask)` but also uses a cool llvm intrinsic.
Proposed in https://github.com/rust-lang/rust/pull/95643#issuecomment-1121562352
cc `@Gankra` `@scottmcm` `@RalfJung`
r? rust-lang/libs-api
Update documentation for `write!` and `writeln!`
https://github.com/rust-lang/rust/pull/37472 added this documentation, but it
needs updating:
- Remove some documentation duplicated between `writeln!` and `write!`
- Update `write!` docs: can now import traits as `_` to avoid conflicts
- Expand example to show how to implement qualified trait names
Without this change, in <https://doc.rust-lang.org/1.63.0/std/#primitives>,
`reference` is the only entry in that list which does not contain the
syntax by which the type is named in source code. With this change, it
contains them, in roughly the same way as the `pointer` entry does.
Reduce code size of `assert_matches_failed`
Using `write_str` instead of `<str as Display>::fmt` avoids the `pad` function which is very expensive to have in size-constrained code.
make slice::{split_at,split_at_unchecked} const functions
Now that `slice::from_raw_parts` is const in stable 1.64, it makes sense to have `split_at` const as well, otherwise unsafe code is required to achieve a const equivalent.
is_whitespace() performance improvements
This is my first rust PR, so if I miss anything obvious please let me know and I'll do my best to fix it.
This was a bit more of a challenge than I realized because, while I made working code locally and tested it against the native `is_whitespace()`, this PR required changing `src/tools/unicode-table-generator`, the code that generated the code.
I have benchmarked this locally, using criterion, and have seen meaningful performance improvements. I can add those outputs to this if you'd like, but am guessing that the perf run that `@fmease` recommended is what's needed.
I have run ` ./x.py test --stage 0 library/std` after building it locally after executing `./x.py build library`. I didn't try to build the whole compiler, but maybe I should have - any guidance would be appreciated.
If this general approach makes sense, I'll take a look at some other candidate categories, e.g., `Cc`, in the future.
Oh, and I wasn't sure whether the generated code should be included in this PR or not. I did include it.
Update stdarch submodule
Changes from stdarch:
* Fix links in documentation of cmpxchg16b
* Use load intrinsic and loop for intrinsic-test programs. Add --release flag back to intrinsic-test programs.
* Properly fix vext intrinsic tests
* Replace some calls to `pointer::offset` with `add` and `sub`
* Allow internal use of stdsimd from detect_feature
* fix target name in contributing.md
* Tweak constant for ARM vext instruction tests
* Use `llvm.ppc.altivec.lvx` intrinsic for `vec_ld`
* Adding doc links for arm neon intrinsics
* Adding doc links for arm crypto and aes intrinsics
* Remove instruction tests for `__mmask*` intrinsics
* Update ubuntu 21.10 docker containers to 22.04
* Adding documentation links for arm crc32 intrinsics
* Remove restrictions on compare-exchange memory ordering.
* Fix a typo in the document.
* Allow mapping a runtime feature to a set of target_features
* Update atomic intrinsics
* Fully qualify recursive macro calls
* Ensure the neon vector aggregates like `float32x4x4_t` are `#[repr(C)]`
* Remove useless conditional compilation
* Fix ARM vbsl* NEON intrinsics
r? `@Amanieu`
Rewrite error index generator to greatly reduce the size of the pages
Fixes https://github.com/rust-lang/rust/issues/100736.
Instead of having all error codes in a same page (making the DOM way too big), I split the output into multiple files and generated a list of links (if there is an explanation) to the error codes' explanation into the already existing file.
I also used this opportunity to greatly simplify the code. Instead of needing a `build.rs`, I simply imported the file we want and wrote the macro which generates a function containing everything we need. We just need to call it to get the error codes and their explanation (if any). Also, considering the implementations between markdown and HTML formats differed even further, the `Formatter` trait was becoming too problematic so I removed it too.
You can test it [here](https://rustdoc.crud.net/imperio/rewrite-error-index/error-index.html).
cc ``@jsha``
r? ``@notriddle``
Move Error trait into core
This PR moves the error trait from the standard library into a new unstable `error` module within the core library. The goal of this PR is to help unify error reporting across the std and no_std ecosystems, as well as open the door to integrating the error trait into the panic reporting system when reporting panics whose source is an errors (such as via `expect`).
This PR is a rewrite of https://github.com/rust-lang/rust/pull/90328 using new compiler features that have been added to support error in core.
While the `provide_*` methods already short-circuit when a value has
been provided, there are times where an expensive computation is
needed to determine if the `provide_*` method can even be called.
Use pointer `is_aligned*` methods
This PR replaces some manual alignment checks with calls to `pointer::{is_aligned, is_aligned_to}` and removes a useless pointer cast.
r? `@scottmcm`
_split off from #100746_
Std module docs improvements
My primary goal is to create a cleaner separation between primitive types and primitive type helper modules (fixes#92777). I also changed a few header lines in other top-level std modules (seen at https://doc.rust-lang.org/std/) for consistency.
Some conventions used/established:
* "The \`Box\<T>` type for heap allocation." - if a module mainly provides a single type, name it and summarize its purpose in the module header
* "Utilities for the _ primitive type." - this wording is used for the header of helper modules
* Documentation for primitive types themselves are removed from helper modules
* provided-by-core functionality of primitive types is documented in the primitive type instead of the helper module (such as the "Iteration" section in the slice docs)
I wonder if some content in `std::ptr` should be in `pointer` but I did not address this.
Replace most uses of `pointer::offset` with `add` and `sub`
As PR title says, it replaces `pointer::offset` in compiler and standard library with `pointer::add` and `pointer::sub`. This generally makes code cleaner, easier to grasp and removes (or, well, hides) integer casts.
This is generally trivially correct, `.offset(-constant)` is just `.sub(constant)`, `.offset(usized as isize)` is just `.add(usized)`, etc. However in some cases we need to be careful with signs of things.
r? ````@scottmcm````
_split off from #100746_
Make some docs nicer wrt pointer offsets
This PR replaces `pointer::offset` with `pointer::add` and similarly `.cast().wrapping_add().cast()` with `.wrapping_byte_add()` **in docs**.
r? ``````@scottmcm``````
_split off from #100746_
Clamp Function for f32 and f64
I thought the clamp function could use a little improvement for readability purposes. The function now returns early in order to skip the extra bound checks.
If there was a reason for binding `self` to `x` or if this code is incorrect, please correct me :)
This commit adds the following functions all of which have a signature
`pointer, usize -> pointer`:
- `<*mut T>::mask`
- `<*const T>::mask`
- `intrinsics::ptr_mask`
These functions are equivalent to `.map_addr(|a| a & mask)` but they
utilize `llvm.ptrmask` llvm intrinsic.
*masks your pointers*
Fix trailing space showing up in example
The current text is rendered as: U+005B ..= U+0060 ``[ \ ] ^ _ ` ``, or (**note the final space!**)
This patch changes that to render as: U+005B ..= U+0060 `` [ \ ] ^ _ ` ``, or (**note no final space!**)
The reason for that, is that CommonMark has a solution for starting or ending inline code with a backtick/grave accent: padding both sides with a space, makes that padding disappear.
Expose `Utf8Lossy` as `Utf8Chunks`
This PR changes the feature for `Utf8Lossy` from `str_internals` to `utf8_lossy` and improves the API. This is done to eventually expose the API as stable.
Proposal: rust-lang/libs-team#54
Tracking Issue: #99543
Refactor iteration logic in the `Flatten` and `FlatMap` iterators
The `Flatten` and `FlatMap` iterators both delegate to `FlattenCompat`:
```rust
struct FlattenCompat<I, U> {
iter: Fuse<I>,
frontiter: Option<U>,
backiter: Option<U>,
}
```
Every individual iterator method that `FlattenCompat` implements needs to carefully manage this state, checking whether the `frontiter` and `backiter` are present, and storing the current iterator appropriately if iteration is aborted. This has led to methods such as `next`, `advance_by`, and `try_fold` all having similar code for managing the iterator's state.
I have extracted this common logic of iterating the inner iterators with the option to exit early into a `iter_try_fold` method:
```rust
impl<I, U> FlattenCompat<I, U>
where
I: Iterator<Item: IntoIterator<IntoIter = U>>,
{
fn iter_try_fold<Acc, Fold, R>(&mut self, acc: Acc, fold: Fold) -> R
where
Fold: FnMut(Acc, &mut U) -> R,
R: Try<Output = Acc>,
{ ... }
}
```
It passes each of the inner iterators to the given function as long as it keep succeeding. It takes care of managing `FlattenCompat`'s state, so that the actual `Iterator` methods don't need to. The resulting code that makes use of this abstraction is much more straightforward:
```rust
fn next(&mut self) -> Option<U::Item> {
#[inline]
fn next<U: Iterator>((): (), iter: &mut U) -> ControlFlow<U::Item> {
match iter.next() {
None => ControlFlow::CONTINUE,
Some(x) => ControlFlow::Break(x),
}
}
self.iter_try_fold((), next).break_value()
}
```
Note that despite being implemented in terms of `iter_try_fold`, `next` is still able to benefit from `U`'s `next` method. It therefore does not take the performance hit that implementing `next` directly in terms of `Self::try_fold` causes (in some benchmarks).
This PR also adds `iter_try_rfold` which captures the shared logic of `try_rfold` and `advance_back_by`, as well as `iter_fold` and `iter_rfold` for folding without early exits (used by `fold`, `rfold`, `count`, and `last`).
Benchmark results:
```
before after
bench_flat_map_sum 423,255 ns/iter 414,338 ns/iter
bench_flat_map_ref_sum 1,942,139 ns/iter 2,216,643 ns/iter
bench_flat_map_chain_sum 1,616,840 ns/iter 1,246,445 ns/iter
bench_flat_map_chain_ref_sum 4,348,110 ns/iter 3,574,775 ns/iter
bench_flat_map_chain_option_sum 780,037 ns/iter 780,679 ns/iter
bench_flat_map_chain_option_ref_sum 2,056,458 ns/iter 834,932 ns/iter
```
I added the last two benchmarks specifically to demonstrate an extreme case where `FlatMap::next` can benefit from custom internal iteration of the outer iterator, so take it with a grain of salt. We should probably do a perf run to see if the changes to `next` are worth it in practice.
I noticed in the MIR for <https://play.rust-lang.org/?version=nightly&mode=release&edition=2021&gist=67097e0494363ee27421a4e3bdfaf513> that it's inlined most stuff
```
scope 5 (inlined <Result<i32, u32> as Try>::branch)
```
```
scope 8 (inlined <Result<i32, u32> as Try>::from_output)
```
But yet the do-nothing `from` call was still there:
```
_17 = <u32 as From<u32>>::from(move _18) -> bb9;
```
So let's give this a try and see what perf has to say.
Don't derive `PartialEq::ne`.
Currently we skip deriving `PartialEq::ne` for C-like (fieldless) enums
and empty structs, thus reyling on the default `ne`. This behaviour is
unnecessarily conservative, because the `PartialEq` docs say this:
> Implementations must ensure that eq and ne are consistent with each other:
>
> `a != b` if and only if `!(a == b)` (ensured by the default
> implementation).
This means that the default implementation (`!(a == b)`) is always good
enough. So this commit changes things such that `ne` is never derived.
The motivation for this change is that not deriving `ne` reduces compile
times and binary sizes.
Observable behaviour may change if a user has defined a type `A` with an
inconsistent `PartialEq` and then defines a type `B` that contains an
`A` and also derives `PartialEq`. Such code is already buggy and
preserving bug-for-bug compatibility isn't necessary.
Two side-effects of the change:
- There is only one error message produced for types where `PartialEq`
cannot be derived, instead of two.
- For coverage reports, some warnings about generated `ne` methods not
being executed have disappeared.
Both side-effects seem fine, and possibly preferable.
Simple Clamp Function
I thought this was more robust and easier to read. I also allowed this function to return early in order to skip the extra bound check (I'm sure the difference is negligible). I'm not sure if there was a reason for binding `self` to `x`; if so, please correct me.
Simple Clamp Function for f64
I thought this was more robust and easier to read. I also allowed this function to return early in order to skip the extra bound check (I'm sure the difference is negligible). I'm not sure if there was a reason for binding `self` to `x`; if so, please correct me.
Floating point clamp test
f32 clamp using mut self
f64 clamp using mut self
Update library/core/src/num/f32.rs
Update f64.rs
Update x86_64-floating-point-clamp.rs
Update src/test/assembly/x86_64-floating-point-clamp.rs
Update x86_64-floating-point-clamp.rs
Co-Authored-By: scottmcm <scottmcm@users.noreply.github.com>
Update the minimum external LLVM to 13
With this change, we'll have stable support for LLVM 13 through 15 (pending release).
For reference, the previous increase to LLVM 12 was #90175.
r? `@nagisa`
The current text is rendered as: U+005B ..= U+0060 ``[ \ ] ^ _ ` ``, or.
This patch changes that to render as: U+005B ..= U+0060 `` [ \ ] ^ _ ` ``, or
The reason for that, is that CommonMark has a solution for starting or ending inline code with a backtick/grave accent: padding both sides with a space, makes that padding disappear.