Handle normalization failure in `struct_tail_erasing_lifetimes`
Fixes#113272
The ICE occurred because the struct being normalized had an error. This PR adds some defensive code to guard against that.
Do not ICE on `AnonConst`s in `diagnostic_hir_wf_check`
Fixes#122989
Below is the snippet from #122989 that ICEs:
```rust
trait Traitor<const N: N<2> = 1, const N: N<2> = N> {
fn N(&N) -> N<2> {
M
}
}
trait N<const N: Traitor<2> = 12> {}
```
The `AnonConst` that triggers the ICE is the `2` in the param `const N: N<2> = 1`. The currently existing code in `diagnostic_hir_wf_check` deals only with `AnonConst`s that are default values of some param, but the `2` is not a default value. It is just an `AnonConst` HIR node inside a `TraitRef` HIR node corresponding to `N<2>`. Therefore the existing code cannot handle it and this PR ensures that it does.
Account for immutably borrowed locals in MIR copy-prop and GVN
For the most part, we consider that immutably borrowed `Freeze` locals still fulfill SSA conditions. As the borrow is immutable, any use of the local will have the value given by the single assignment, and there can be no surprise.
This allows copy-prop to merge a non-borrowed local with a borrowed local. We chose to keep copy-classes heads unborrowed, as those may be easier to optimize in later passes.
This also allows to GVN the value behind an immutable borrow. If a SSA local is borrowed, dereferencing that borrow is equivalent to copying the local's value: re-executing the assignment between the borrow and the dereference would be UB.
r? `@ghost` for perf
Mark unions non-const-propagatable in `KnownPanicsLint` without calling layout
Fixes#123710
The ICE occurs during the layout calculation of the union `InvalidTag` in #123710 because the following assert fails:5fe8b697e7/compiler/rustc_abi/src/layout.rs (L289-L292)
The layout calculation is invoked by `KnownPanicsLint` when it is trying to figure out which locals it can const prop. Since `KnownPanicsLint` is never actually going to const props unions thanks to PR https://github.com/rust-lang/rust/pull/121628 there's no point calling layout to check if it can. So in this fix I skip the call to layout and just mark the local non-const propagatable if it is a union.
Fix ICE on invalid const param types
Fixes ICE #123863 which occurs because the const param has a type which is not a `bool`, `char` or an integral type.
The ICEing code path begins here in `typeck_with_fallback`: cb3752d20e/compiler/rustc_hir_typeck/src/lib.rs (L167)
The `fallback` invokes the `type_of` query and that eventually ends up calling `ct_infer` from the lowering code over here:
cb3752d20e/compiler/rustc_hir_analysis/src/hir_ty_lowering/mod.rs (L561) and `ct_infer` ICEs at this location: cb3752d20e/compiler/rustc_hir_analysis/src/collect.rs (L392)
To fix the ICE it I'm triggering a `span_delayed_bug` before we hit `ct_infer` if the type of the const param is not one of the supported types
### Edit
On `@lcnr's` suggestion I've changed the approach to not let `ReStatic` region hit the `bug!` in `ct_infer` instead of triggering a `span_delayed_bug`.
Do `check_coroutine_obligations` once per typeck root
We only need to do `check_coroutine_obligations` once per typeck root, especially since the new solver can't really (easily) associate which obligations correspond to which coroutines.
This requires us to move the checks for sized coroutine fields into `mir_coroutine_witnesses`, but that's fine imo.
r? lcnr
crashes: add even more tests?!?
adds more tests that were not already added with https://github.com/rust-lang/rust/pull/124038 from the past 10 months or so.
Need a couple more passes through the tracker to filter out more missing ice /fixed tests but we're slowly getting there.
Taint const qualifs if a static is referenced that didn't pass wfcheck
It is correct to only check the signature here, as the ICE is caused by `USE_WITH_ERROR` trying to allocate memory to store the result of `WITH_ERROR` before evaluating it.
fixes#123153
Trait predicates for types which have errors may still
evaluate to OK leading to downstream ICEs. Now we return
a selection error for such types in candidate assembly and
thereby prevent such issues