offset_of: allow (unstably) taking the offset of slice tail fields
Fields of type `[T]` have a statically known offset, so there is no reason to forbid them in `offset_of!`. This PR adds the `offset_of_slice` feature to allow them.
I created a tracking issue: https://github.com/rust-lang/rust/issues/126151.
Revert: create const block bodies in typeck via query feeding
as per the discussion in https://github.com/rust-lang/rust/pull/125806#discussion_r1622563948
It was a mistake to try to shoehorn const blocks and some specific anon consts into the same box and feed them during typeck. It turned out not simplifying anything (my hope was that we could feed `type_of` to start avoiding the huge HIR matcher, but that didn't work out), but instead making a few things more fragile.
reverts the const-block-specific parts of https://github.com/rust-lang/rust/pull/124650
`@bors` rollup=never had a small perf impact previously
fixes https://github.com/rust-lang/rust/issues/125846
r? `@compiler-errors`
Remove the `ty` field from type system `Const`s
Fixes#125556Fixes#122908
Part of the work on `adt_const_params`/`generic_const_param_types`/`min_generic_const_exprs`/generally making the compiler nicer. cc rust-lang/project-const-generics#44
Please review commit-by-commit otherwise I wasted a lot of time not just squashing this into a giant mess (and also it'll be SO much nicer because theres a lot of fluff changes mixed in with other more careful changes if looking via File Changes
---
Why do this?
- The `ty` field keeps causing ICEs and weird behaviour due to it either being treated as "part of the const" or it being forgotten about leading to ICEs.
- As we move forward with `adt_const_params` and a potential `min_generic_const_exprs` it's going to become more complex to actually lower the correct `Ty<'tcx>`
- It muddles the idea behind how we check `Const` arguments have the correct type. By having the `ty` field it may seem like we ought to be relating it when we relate two types, or that its generally important information about the `Const`.
- Brings the compiler more in line with `a-mir-formality` as that also tracks the type of type system `Const`s via `ConstArgHasType` bounds in the env instead of on the `Const` itself.
- A lot of stuff is a lot nicer when you dont have to pass around the type of a const lol. Everywhere we construct `Const` is now significantly nicer 😅
See #125671's description for some more information about the `ty` field
---
General summary of changes in this PR:
- Add `Ty` to `ConstKind::Value` as otherwise there is no way to implement `ConstArgHasType` to ensure that const arguments are correctly typed for the parameter when we stop creating anon consts for all const args. It's also just incredibly difficult/annoying to thread the correct `Ty` around to a bunch of ctfe functions otherwise.
- Fully implement `ConstArgHasType` in both the old and new solver. Since it now has no reliance on the `ty` field it serves its originally intended purpose of being able to act as a double check that trait vs impls have correctly typed const parameters. It also will now be able to be responsible for checking types of const arguments to parameters under `min_generic_const_exprs`.
- Add `Ty` to `mir::Const::Ty`. I dont have a great understanding of why mir constants are setup like this to be honest. Regardless they need to be able to determine the type of the const and the easiest way to make this happen was to simply store the `Ty` along side the `ty::Const`. Maybe we can do better here in the future but I'd have to spend way more time looking at everywhere we use `mir::Const`.
- rustdoc has its own `Const` which also has a `ty` field. It was relatively easy to remove this.
---
r? `@lcnr` `@compiler-errors`
Don't walk the bodies of free constants for reachability.
follow-up to #122371
cc #119214
This avoids codegening items (e.g. functions) that are only used during const eval, but do not reach their final constant value (e.g. via function pointers).
r? `@tmiasko`
Add intra-doc-links to rustc_middle crate-level docs.
Makes it slightly faster to find these modules, as you don't need to hunt for them in the big list.
Add `size_of` and `size_of_val` and `align_of` and `align_of_val` to the prelude
(Note: need to update the PR to add `align_of` and `align_of_val`, and remove the second commit with the myriad changes to appease the lint.)
Many, many projects use `size_of` to get the size of a type. However,
it's also often equally easy to hardcode a size (e.g. `8` instead of
`size_of::<u64>()`). Minimizing friction in the use of `size_of` helps
ensure that people use it and make code more self-documenting.
The name `size_of` is unambiguous: the name alone, without any prefix or
path, is self-explanatory and unmistakeable for any other functionality.
Adding it to the prelude cannot produce any name conflicts, as any local
definition will silently shadow the one from the prelude. Thus, we don't
need to wait for a new edition prelude to add it.
Store the types of `ty::Expr` arguments in the `ty::Expr`
Part of #125958
In attempting to remove the `ty` field on `Const` it will become necessary to store the `Ty<'tcx>` inside of `Expr<'tcx>`. In order to do this without blowing up the size of `ConstKind`, we start storing the type/const args as `GenericArgs`
r? `@oli-obk`
Align `Term` methods with `GenericArg` methods, add `Term::expect_*`
* `Term::ty` -> `Term::as_type`.
* `Term::ct` -> `Term::as_const`.
* Adds `Term::expect_type` and `Term::expect_const`, and uses them in favor of `.ty().unwrap()`, etc.
I could also shorten these to `as_ty` and then do `GenericArg::as_ty` as well, but I do think the `as_` is important to signal that this is a conversion method, and not a getter, like `Const::ty` is.
r? types
Use parenthetical notation for `Fn` traits
Always use the `Fn(T) -> R` format when printing closure traits instead of `Fn<(T,), Output = R>`.
Address #67100:
```
error[E0277]: expected a `Fn()` closure, found `F`
--> file.rs:6:13
|
6 | call_fn(f)
| ------- ^ expected an `Fn()` closure, found `F`
| |
| required by a bound introduced by this call
|
= note: wrap the `F` in a closure with no arguments: `|| { /* code */ }`
note: required by a bound in `call_fn`
--> file.rs:1:15
|
1 | fn call_fn<F: Fn() -> ()>(f: &F) {
| ^^^^^^^^^^ required by this bound in `call_fn`
help: consider further restricting this bound
|
5 | fn call_any<F: std::any::Any + Fn()>(f: &F) {
| ++++++
```
Uplift `{Closure,Coroutine,CoroutineClosure}Args` and friends to `rustc_type_ir`
Part of converting the new solver's `structural_traits.rs` to be interner-agnostic.
I decided against aliasing `ClosureArgs<TyCtxt<'tcx>>` to `ClosureArgs<'tcx>` because it seemed so rare. I could do so if desired, though.
r? lcnr
Implement `needs_async_drop` in rustc and optimize async drop glue
This PR expands on #121801 and implements `Ty::needs_async_drop` which works almost exactly the same as `Ty::needs_drop`, which is needed for #123948.
Also made compiler's async drop code to look more like compiler's regular drop code, which enabled me to write an optimization where types which do not use `AsyncDrop` can simply forward async drop glue to `drop_in_place`. This made size of the async block from the [async_drop test](67980dd6fb/tests/ui/async-await/async-drop.rs) to decrease by 12%.
Rename HIR `TypeBinding` to `AssocItemConstraint` and related cleanup
Rename `hir::TypeBinding` and `ast::AssocConstraint` to `AssocItemConstraint` and update all items and locals using the old terminology.
Motivation: The terminology *type binding* is extremely outdated. "Type bindings" not only include constraints on associated *types* but also on associated *constants* (feature `associated_const_equality`) and on RPITITs of associated *functions* (feature `return_type_notation`). Hence the word *item* in the new name. Furthermore, the word *binding* commonly refers to a mapping from a binder/identifier to a "value" for some definition of "value". Its use in "type binding" made sense when equality constraints (e.g., `AssocTy = Ty`) were the only kind of associated item constraint. Nowadays however, we also have *associated type bounds* (e.g., `AssocTy: Bound`) for which the term *binding* doesn't make sense.
---
Old terminology (HIR, rustdoc):
```
`TypeBinding`: (associated) type binding
├── `Constraint`: associated type bound
└── `Equality`: (associated) equality constraint (?)
├── `Ty`: (associated) type binding
└── `Const`: associated const equality (constraint)
```
Old terminology (AST, abbrev.):
```
`AssocConstraint`
├── `Bound`
└── `Equality`
├── `Ty`
└── `Const`
```
New terminology (AST, HIR, rustdoc):
```
`AssocItemConstraint`: associated item constraint
├── `Bound`: associated type bound
└── `Equality`: associated item equality constraint OR associated item binding (for short)
├── `Ty`: associated type equality constraint OR associated type binding (for short)
└── `Const`: associated const equality constraint OR associated const binding (for short)
```
r? compiler-errors
coverage: Rename MC/DC `conditions_num` to `num_conditions`
Updated version of #124571, without the other changes that were split out into #125108 and #125700.
This value represents a quantity of conditions, not an ID, so the new spelling is more appropriate.
Some of the code touched by this PR could perhaps use some other changes, but I would prefer to keep this PR as a simple renaming and avoid scope creep.
`@rustbot` label +A-code-coverage
Always use the `Fn(T) -> R` format when printing closure traits instead of `Fn<(T,), Output = R>`.
Fix#67100:
```
error[E0277]: expected a `Fn()` closure, found `F`
--> file.rs:6:13
|
6 | call_fn(f)
| ------- ^ expected an `Fn()` closure, found `F`
| |
| required by a bound introduced by this call
|
= note: wrap the `F` in a closure with no arguments: `|| { /* code */ }`
note: required by a bound in `call_fn`
--> file.rs:1:15
|
1 | fn call_fn<F: Fn() -> ()>(f: &F) {
| ^^^^^^^^^^ required by this bound in `call_fn`
help: consider further restricting this bound
|
5 | fn call_any<F: std::any::Any + Fn()>(f: &F) {
| ++++++
```