Distinguish between library and lang UB in assert_unsafe_precondition
As described in https://github.com/rust-lang/rust/pull/121583#issuecomment-1963168186, `assert_unsafe_precondition` now explicitly distinguishes between language UB (conditions we explicitly optimize on) and library UB (things we document you shouldn't do, and maybe some library internals assume you don't do).
`debug_assert_nounwind` was originally added to avoid the "only at runtime" aspect of `assert_unsafe_precondition`. Since then the difference between the macros has gotten muddied. This totally revamps the situation.
Now _all_ preconditions shall be checked with `assert_unsafe_precondition`. If you have a precondition that's only checkable at runtime, do a `const_eval_select` hack, as done in this PR.
r? RalfJung
Fix misaligned loads when loading UEFI arg pointers
Currently, the two UEFI argument pointers are stored in an `alloca` of alignment 1, a pointer to which is then passed as `argv`. However, [the library code](9c3ad802d9/library/std/src/sys/pal/uefi/mod.rs (L60-L61)) treats `argv` as a pointer to an array of pointers and dereferences it as such, meaning that it presumes the `alloca` is aligned to at least the alignment of a pointer. This PR fixes this mismatch by aligning the `alloca` to the alignment of a pointer.
This PR also changed the `gep` to use the new `inbounds_ptradd` method.
Add asm goto support to `asm!`
Tracking issue: #119364
This PR implements asm-goto support, using the syntax described in "future possibilities" section of [RFC2873](https://rust-lang.github.io/rfcs/2873-inline-asm.html#asm-goto).
Currently I have only implemented the `label` part, not the `fallthrough` part (i.e. fallthrough is implicit). This doesn't reduce the expressive though, since you can use label-break to get arbitrary control flow or simply set a value and rely on jump threading optimisation to get the desired control flow. I can add that later if deemed necessary.
r? ``@Amanieu``
cc ``@ojeda``
Introduces the `arm64ec-pc-windows-msvc` target for building Arm64EC ("Emulation Compatible") binaries for Windows.
For more information about Arm64EC see <https://learn.microsoft.com/en-us/windows/arm/arm64ec>.
Tier 3 policy:
> A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
I will be the maintainer for this target.
> Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
Target uses the `arm64ec` architecture to match LLVM and MSVC, and the `-pc-windows-msvc` suffix to indicate that it targets Windows via the MSVC environment.
> Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
Target name exactly specifies the type of code that will be produced.
> If possible, use only letters, numbers, dashes and underscores for the name. Periods (.) are known to cause issues in Cargo.
Done.
> Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
> The target must not introduce license incompatibilities.
Uses the same dependencies, requirements and licensing as the other `*-pc-windows-msvc` targets.
> Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).
Understood.
> The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
> Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
> "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
Uses the same dependencies, requirements and licensing as the other `*-pc-windows-msvc` targets.
> Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
> This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
Understood, I am not a member of the Rust team.
> Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
Both `core` and `alloc` are supported.
Support for `std` dependends on making changes to the standard library, `stdarch` and `backtrace` which cannot be done yet as the bootstrapping compiler raises a warning ("unexpected `cfg` condition value") for `target_arch = "arm64ec"`.
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
Documentation is provided in src/doc/rustc/src/platform-support/arm64ec-pc-windows-msvc.md
> Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via @) to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
> Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
> In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
Understood.
cleanup: remove zero-offset GEP
This GEP would've been used to change the pointer type in the past, but after opaque pointers it's a no-op. I missed removing this in #105545.
Split out from #121577.
This always produces zero offset, regardless of what the struct layout
is.
Originally, this may have been necessary in order to change the pointer type,
but with opaque pointers, it is no longer necessary.
`-s` option doesn't perfectly fit into debuginfo()'s semantics and may unexpectedly
remove metadata in shared libraries. Remove the implementation and suggest user to
use `strip` utility instead.
Add a scheme for moving away from `extern "rust-intrinsic"` entirely
All `rust-intrinsic`s can become free functions now, either with a fallback body, or with a dummy body and an attribute, requiring backends to actually implement the intrinsic.
This PR demonstrates the dummy-body scheme with the `vtable_size` intrinsic.
cc https://github.com/rust-lang/rust/issues/63585
follow-up to #120500
MCP at https://github.com/rust-lang/compiler-team/issues/720
Existing names for values of this type are `sess`, `parse_sess`,
`parse_session`, and `ps`. `sess` is particularly annoying because
that's also used for `Session` values, which are often co-located, and
it can be difficult to know which type a value named `sess` refers to.
(That annoyance is the main motivation for this change.) `psess` is nice
and short, which is good for a name used this much.
The commit also renames some `parse_sess_created` values as
`psess_created`.
For the former, it's fine for `inbounds` offsets to be one-past-the-end,
so it's okay even if the ZST is the last field in the layout:
> The base pointer has an in bounds address of an allocated object,
> which means that it points into an allocated object, or to its end.
https://llvm.org/docs/LangRef.html#getelementptr-instruction
For the latter, even DST fields must always be inside the layout
(or to its end for ZSTs), so using inbounds is also fine there.
Adds initial support for DataFlowSanitizer to the Rust compiler. It
currently supports `-Zsanitizer-dataflow-abilist`. Additional options
for it can be passed to LLVM command line argument processor via LLVM
arguments using `llvm-args` codegen option (e.g.,
`-Cllvm-args=-dfsan-combine-pointer-labels-on-load=false`).
Add profiling support to AIX
AIX ld needs special option to merge objects with profiling. Also, profiler_builtins should include builtins for AIX from compiler-rt.
Add stubs in IR and ABI for `f16` and `f128`
This is the very first step toward the changes in https://github.com/rust-lang/rust/pull/114607 and the [`f16` and `f128` RFC](https://rust-lang.github.io/rfcs/3453-f16-and-f128.html). It adds the types to `rustc_type_ir::FloatTy` and `rustc_abi::Primitive`, and just propagates those out as `unimplemented!` stubs where necessary.
These types do not parse yet so there is no feature gate, and it should be okay to use `unimplemented!`.
The next steps will probably be AST support with parsing and the feature gate.
r? `@compiler-errors`
cc `@Nilstrieb` suggested breaking the PR up in https://github.com/rust-lang/rust/pull/120645#issuecomment-1925900572
rustc: Fix wasm64 metadata object files
It looks like LLD will detect object files being either 32 or 64-bit depending on any memory present. LLD will additionally reject 32-bit objects during a 64-bit link. Previously metadata objects did not have any memories in them which led LLD to conclude they were 32-bit objects which broke 64-bit targets for wasm.
This commit fixes this by ensuring that for 64-bit targets there's a memory object present to get LLD to detect it's a 64-bit target. Additionally this commit moves away from a hand-crafted wasm encoder to the `wasm-encoder` crate on crates.io as the complexity grows for the generated object file.
Closes#121460
Note the change of the `D` to `d`, to match all the other names that
have `Subdiag` in them, such as `SubdiagnosticMessage` and
`derive(Subdiagnostic)`.
Remove useless lifetime of ArchiveBuilder
`trait ArchiveBuilder<'a>` has a seemingly useless lifetime a, so I remove it. If this is intentional, please reject this PR.
```rust
pub trait ArchiveBuilder<'a> {
fn add_file(&mut self, path: &Path);
fn add_archive(
&mut self,
archive: &Path,
skip: Box<dyn FnMut(&str) -> bool + 'static>,
) -> io::Result<()>;
fn build(self: Box<Self>, output: &Path) -> bool;
}
```
It looks like LLD will detect object files being either 32 or 64-bit
depending on any memory present. LLD will additionally reject 32-bit
objects during a 64-bit link. Previously metadata objects did not have
any memories in them which led LLD to conclude they were 32-bit objects
which broke 64-bit targets for wasm.
This commit fixes this by ensuring that for 64-bit targets there's a
memory object present to get LLD to detect it's a 64-bit target.
Additionally this commit moves away from a hand-crafted wasm encoder to
the `wasm-encoder` crate on crates.io as the complexity grows for the
generated object file.
Closes#121460
Improve codegen diagnostic handling
Clarify the workings of the temporary `Diagnostic` type used to send diagnostics from codegen threads to the main thread.
r? `@estebank`
- Make it more closely match `rustc_errors::Diagnostic`, by making the
field names match, and adding `children`, which requires adding
`rustc_codegen_ssa:🔙:write::Subdiagnostic`.
- Check that we aren't missing important info when converting
diagnostics.
- Add better comments.
- Tweak `rustc_errors::Diagnostic::replace_args` so that we don't need
to do any cloning when converting diagnostics.
First, introduce a typedef `DiagnosticArgMap`.
Second, make the `args` field public, and remove the `args` getter and
`replace_args` setter. These were necessary previously because the getter
had a `#[allow(rustc::potential_query_instability)]` attribute, but that
was removed in #120931 when the args were changed from `FxHashMap` to
`FxIndexMap`. (All the other `Diagnostic` fields are public.)
Add "algebraic" fast-math intrinsics, based on fast-math ops that cannot return poison
Setting all of LLVM's fast-math flags makes our fast-math intrinsics very dangerous, because some inputs are UB. This set of flags permits common algebraic transformations, but according to the [LangRef](https://llvm.org/docs/LangRef.html#fastmath), only the flags `nnan` (no nans) and `ninf` (no infs) can produce poison.
And this uses the algebraic float ops to fix https://github.com/rust-lang/rust/issues/120720
cc `@orlp`
The goal of this commit is to remove warnings using LLVM tip-of-tree
`wasm-ld`. In llvm/llvm-project#78658 the `wasm-ld` LLD driver no longer
looks at archive indices and instead looks at all the objects in
archives. Previously `lib.rmeta` files were simply raw rustc metadata
bytes, not wasm objects, meaning that `wasm-ld` would emit a warning
indicating so.
WebAssembly targets previously passed `--fatal-warnings` to `wasm-ld` by
default which meant that if Rust were to update to LLVM 18 then all wasm
targets would not work. This immediate blocker was resolved in
rust-lang/rust#120278 which removed `--fatal-warnings` which enabled a
theoretical update to LLVM 18 for wasm targets. This current state is
ok-enough for now because rustc squashes all linker output by default if
it doesn't fail. This means, for example, that rustc squashes all the
linker warnings coming out of `wasm-ld` about `lib.rmeta` files with
LLVM 18. This again isn't a pressing issue because the information is
all hidden, but it runs the risk of being annoying if another linker
error were to happen and then the output would have all these unrelated
warnings that couldn't be fixed.
Thus, this PR comes into the picture. The goal of this PR is to resolve
these warnings by using the WebAssembly object file format on wasm
targets instead of using raw rustc metadata. When I first implemented
the rlib-in-objects scheme in #84449 I remember either concluding that
`wasm-ld` would either include the metadata in the output or I thought
we didn't have to do anything there at all. I think I was wrong on both
counts as `wasm-ld` does not include the metadata in the final output
unless the object is referenced and we do actually need to do something
to resolve these warnings.
This PR updates the object file format containing rustc metadata on
WebAssembly targets to be an actual WebAssembly file. This enables the
`wasm` feature of the `object` crate to be able to read the custom
section in the same manner as other platforms, but currently `object`
doesn't support writing wasm object files so a handwritten encoder is
used instead.
The only caveat I know of with this is that if `wasm-ld` does indeed
look at the object file then the metadata will be included in the final
output. I believe the only thing that could cause that at this time is
`--whole-archive` which I don't think is passed for rlibs. I would
clarify that I'm not 100% certain about this, however.
Overhaul `Diagnostic` and `DiagnosticBuilder`
Implements the first part of https://github.com/rust-lang/compiler-team/issues/722, which moves functionality and use away from `Diagnostic`, onto `DiagnosticBuilder`.
Likely follow-ups:
- Move things around, because this PR was written to minimize diff size, so some things end up in sub-optimal places. E.g. `DiagnosticBuilder` has impls in both `diagnostic.rs` and `diagnostic_builder.rs`.
- Rename `Diagnostic` as `DiagInner` and `DiagnosticBuilder` as `Diag`.
r? `@davidtwco`
Currently many diagnostic modifier methods are available on both
`Diagnostic` and `DiagnosticBuilder`. This commit removes most of them
from `Diagnostic`. To minimize the diff size, it keeps them within
`diagnostic.rs` but changes the surrounding `impl Diagnostic` block to
`impl DiagnosticBuilder`. (I intend to move things around later, to give
a more sensible code layout.)
`Diagnostic` keeps a few methods that it still needs, like `sub`,
`arg`, and `replace_args`.
The `forward!` macro, which defined two additional methods per call
(e.g. `note` and `with_note`), is replaced by the `with_fn!` macro,
which defines one additional method per call (e.g. `with_note`). It's
now also only used when necessary -- not all modifier methods currently
need a `with_*` form. (New ones can be easily added as necessary.)
All this also requires changing `trait AddToDiagnostic` so its methods
take `DiagnosticBuilder` instead of `Diagnostic`, which leads to many
mechanical changes. `SubdiagnosticMessageOp` gains a type parameter `G`.
There are three subdiagnostics -- `DelayedAtWithoutNewline`,
`DelayedAtWithNewline`, and `InvalidFlushedDelayedDiagnosticLevel` --
that are created within the diagnostics machinery and appended to
external diagnostics. These are handled at the `Diagnostic` level, which
means it's now hard to construct them via `derive(Diagnostic)`, so
instead we construct them by hand. This has no effect on what they look
like when printed.
There are lots of new `allow` markers for `untranslatable_diagnostics`
and `diagnostics_outside_of_impl`. This is because
`#[rustc_lint_diagnostics]` annotations were present on the `Diagnostic`
modifier methods, but missing from the `DiagnosticBuilder` modifier
methods. They're now present.
Implement intrinsics with fallback bodies
fixes#93145 (though we can port many more intrinsics)
cc #63585
The way this works is that the backend logic for generating custom code for intrinsics has been made fallible. The only failure path is "this intrinsic is unknown". The `Instance` (that was `InstanceDef::Intrinsic`) then gets converted to `InstanceDef::Item`, which represents the fallback body. A regular function call to that body is then codegenned. This is currently implemented for
* codegen_ssa (so llvm and gcc)
* codegen_cranelift
other backends will need to adjust, but they can just keep doing what they were doing if they prefer (though adding new intrinsics to the compiler will then require them to implement them, instead of getting the fallback body).
cc `@scottmcm` `@WaffleLapkin`
### todo
* [ ] miri support
* [x] default intrinsic name to name of function instead of requiring it to be specified in attribute
* [x] make sure that the bodies are always available (must be collected for metadata)
Turn the "no saved object file in work product" ICE into a translatable fatal error
I don't know if it's fair to say this fixes https://github.com/rust-lang/rust/issues/120854 but it surely makes the error reporting better and should encourage people with good instincts like ```@CinchBlue.```
Invert diagnostic lints.
That is, change `diagnostic_outside_of_impl` and `untranslatable_diagnostic` from `allow` to `deny`, because more than half of the compiler has been converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow` attributes, which proves that this change is warranted.
r? ````@davidtwco````
That is, change `diagnostic_outside_of_impl` and
`untranslatable_diagnostic` from `allow` to `deny`, because more than
half of the compiler has be converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow`
attributes, which proves that this change is warranted.
All the other `emit`/`emit_diagnostic` methods were recently made
consuming (e.g. #119606), but this one wasn't. But it makes sense to.
Much of this is straightforward, and lots of `clone` calls are avoided.
There are a couple of tricky bits.
- `Emitter::primary_span_formatted` no longer takes a `Diagnostic` and
returns a pair. Instead it takes the two fields from `Diagnostic` that
it used (`span` and `suggestions`) as `&mut`, and modifies them. This
is necessary to avoid the cloning of `diag.children` in two emitters.
- `from_errors_diagnostic` is rearranged so various uses of `diag` occur
before the consuming `emit_diagnostic` call.
Because it's almost always static.
This makes `impl IntoDiagnosticArg for DiagnosticArgValue` trivial,
which is nice.
There are a few diagnostics constructed in
`compiler/rustc_mir_build/src/check_unsafety.rs` and
`compiler/rustc_mir_transform/src/errors.rs` that now need symbols
converted to `String` with `to_string` instead of `&str` with `as_str`,
but that' no big deal, and worth it for the simplifications elsewhere.
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
Remove unused/unnecessary features
~~The bulk of the actual code changes here is replacing try blocks with equivalent closures. I'm not entirely sure that's a good idea since it may have perf impact, happy to revert if that's the case/the change is unwanted.~~
I also removed a lot of `recursion_limit = "256"` since everything seems to build fine without that and most don't have any comment justifying it.
linker: Refactor library linking methods in `trait Linker`
Linkers are not aware of Rust libraries, they look like regular static or dynamic libraries to them, so Rust-specific methods in `trait Linker` do not make much sense.
They can be either removed or renamed to something more suitable.
Commits after the second one are cleanups.
Do not normalize closure signature when building `FnOnce` shim
It is not necessary to normalize the closure signature when building an `FnOnce` shim for an `Fn`/`FnMut` closure. That closure shim is just calling `FnMut::call_mut(&mut self)` anyways.
It's also somewhat sketchy that we were ever doing this to begin with, since we're normalizing with a `ParamEnv::reveal_all()` param-env, which is definitely not right with possibly polymorphic substs.
This cuts out a tiny bit of unnecessary work in `Instance::resolve` and simplifies the signature because now we can unconditionally return an `Instance`.
Pack u128 in the compiler to mitigate new alignment
This is based on #116672, adding a new `#[repr(packed(8))]` wrapper on `u128` to avoid changing any of the compiler's size assertions. This is needed in two places:
* `SwitchTargets`, otherwise its `SmallVec<[u128; 1]>` gets padded up to 32 bytes.
* `LitKind::Int`, so that entire `enum` can stay 24 bytes.
* This change definitely has far-reaching effects though, since it's public.
Rework how diagnostic lints are stored.
`Diagnostic::code` has the type `DiagnosticId`, which has `Error` and
`Lint` variants. Plus `Diagnostic::is_lint` is a bool, which should be
redundant w.r.t. `Diagnostic::code`.
Seems simple. Except it's possible for a lint to have an error code, in
which case its `code` field is recorded as `Error`, and `is_lint` is
required to indicate that it's a lint. This is what happens with
`derive(LintDiagnostic)` lints. Which means those lints don't have a
lint name or a `has_future_breakage` field because those are stored in
the `DiagnosticId::Lint`.
It's all a bit messy and confused and seems unintentional.
This commit:
- removes `DiagnosticId`;
- changes `Diagnostic::code` to `Option<String>`, which means both
errors and lints can straightforwardly have an error code;
- changes `Diagnostic::is_lint` to `Option<IsLint>`, where `IsLint` is a
new type containing a lint name and a `has_future_breakage` bool, so
all lints can have those, error code or not.
r? `@oli-obk`
`Diagnostic::code` has the type `DiagnosticId`, which has `Error` and
`Lint` variants. Plus `Diagnostic::is_lint` is a bool, which should be
redundant w.r.t. `Diagnostic::code`.
Seems simple. Except it's possible for a lint to have an error code, in
which case its `code` field is recorded as `Error`, and `is_lint` is
required to indicate that it's a lint. This is what happens with
`derive(LintDiagnostic)` lints. Which means those lints don't have a
lint name or a `has_future_breakage` field because those are stored in
the `DiagnosticId::Lint`.
It's all a bit messy and confused and seems unintentional.
This commit:
- removes `DiagnosticId`;
- changes `Diagnostic::code` to `Option<String>`, which means both
errors and lints can straightforwardly have an error code;
- changes `Diagnostic::is_lint` to `Option<IsLint>`, where `IsLint` is a
new type containing a lint name and a `has_future_breakage` bool, so
all lints can have those, error code or not.
Suggest Upgrading Compiler for Gated Features
This PR addresses #117318
I have a few questions:
1. Do we want to specify the current version and release date of the compiler? I have added this in via environment variables, which I found in the code for the rustc cli where it handles the `--version` flag
a. How can I handle the changing message in the tests?
3. Do we want to only show this message when the compiler is old?
a. How can we determine when the compiler is old?
I'll wait until we figure out the message to bless the tests
`is_force_warn` is only possible for diagnostics with `Level::Warning`,
but it is currently stored in `Diagnostic::code`, which every diagnostic
has.
This commit:
- removes the boolean `DiagnosticId::Lint::is_force_warn` field;
- adds a `ForceWarning` variant to `Level`.
Benefits:
- The common `Level::Warning` case now has no arguments, replacing
lots of `Warning(None)` occurrences.
- `rustc_session::lint::Level` and `rustc_errors::Level` are more
similar, both having `ForceWarning` and `Warning`.
In #119606 I added them and used a `_mv` suffix, but that wasn't great.
A `with_` prefix has three different existing uses.
- Constructors, e.g. `Vec::with_capacity`.
- Wrappers that provide an environment to execute some code, e.g.
`with_session_globals`.
- Consuming chaining methods, e.g. `Span::with_{lo,hi,ctxt}`.
The third case is exactly what we want, so this commit changes
`DiagnosticBuilder::foo_mv` to `DiagnosticBuilder::with_foo`.
Thanks to @compiler-errors for the suggestion.
Because it takes an error code after the span. This avoids the confusing
overlap with the `DiagCtxt::struct_span_err` method, which doesn't take
an error code.
Improved support of collapse_debuginfo attribute for macros.
Added walk_chain_collapsed function to consider collapse_debuginfo attribute in parent macros in call chain.
Fixed collapse_debuginfo attribute processing for cranelift (there was if/else branches error swap).
cc https://github.com/rust-lang/rust/issues/100758
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
Replace a number of FxHashMaps/Sets with stable-iteration-order alternatives
This PR replaces almost all of the remaining `FxHashMap`s in query results with either `FxIndexMap` or `UnordMap`. The only case that is missing is the `EffectiveVisibilities` struct which turned out to not be straightforward to transform. Once that is done too, we can remove the `HashStable` implementation from `HashMap`.
The first commit adds the `StableCompare` trait which is a companion trait to `StableOrd`. Some types like `Symbol` can be compared in a cross-session stable way, but their `Ord` implementation is not stable. In such cases, a `StableCompare` implementation can be provided to offer a lightweight way for stable sorting. The more heavyweight option is to sort via `ToStableHashKey`, but then sorting needs to have access to a stable hashing context and `ToStableHashKey` can also be expensive as in the case of `Symbol` where it has to allocate a `String`.
The rest of the commits are rather mechanical and don't overlap, so they are best reviewed individually.
Part of [MCP 533](https://github.com/rust-lang/compiler-team/issues/533).
Separate immediate and in-memory ScalarPair representation
Currently, we assume that ScalarPair is always represented using a two-element struct, both as an immediate value and when stored in memory.
This currently works fairly well, but runs into problems with https://github.com/rust-lang/rust/pull/116672, where a ScalarPair involving an i128 type can no longer be represented as a two-element struct in memory. For example, the tuple `(i32, i128)` needs to be represented in-memory as `{ i32, [3 x i32], i128 }` to satisfy alignment requirements. Using `{ i32, i128 }` instead will result in the second element being stored at the wrong offset (prior to LLVM 18).
Resolve this issue by no longer requiring that the immediate and in-memory type for ScalarPair are the same. The in-memory type will now look the same as for normal struct types (and will include padding filler and similar), while the immediate type stays a simple two-element struct type. This also means that booleans in immediate ScalarPair are now represented as i1 rather than i8, just like we do everywhere else.
The core change here is to llvm_type (which now treats ScalarPair as a normal struct) and immediate_llvm_type (which returns the two-element struct that llvm_type used to produce). The rest is fixing things up to no longer assume these are the same. In particular, this switches places that try to get pointers to the ScalarPair elements to use byte-geps instead of struct-geps.
Because it's redundant w.r.t. `Diagnostic::is_lint`, which is present
for every diagnostic level.
`struct_lint_level_impl` was the only place that set the `Error` field
to `true`, and it's also the only place that calls
`Diagnostic::is_lint()` to set the `is_lint` field.
`Diagnostic` has 40 methods that return `&mut Self` and could be
considered setters. Four of them have a `set_` prefix. This doesn't seem
necessary for a type that implements the builder pattern. This commit
removes the `set_` prefixes on those four methods.
This involves lots of breaking changes. There are two big changes that
force changes. The first is that the bitflag types now don't
automatically implement normal derive traits, so we need to derive them
manually.
Additionally, bitflags now have a hidden inner type by default, which
breaks our custom derives. The bitflags docs recommend using the impl
form in these cases, which I did.
Make closures carry their own ClosureKind
Right now, we use the "`movability`" field of `hir::Closure` to distinguish a closure and a coroutine. This is paired together with the `CoroutineKind`, which is located not in the `hir::Closure`, but the `hir::Body`. This is strange and redundant.
This PR introduces `ClosureKind` with two variants -- `Closure` and `Coroutine`, which is put into `hir::Closure`. The `CoroutineKind` is thus removed from `hir::Body`, and `Option<Movability>` no longer needs to be a stand-in for "is this a closure or a coroutine".
r? eholk
Split coroutine desugaring kind from source
What a coroutine is desugared from (gen/async gen/async) should be separate from where it comes (fn/block/closure).
There are only three. It's simpler to make the type
`DiagnosticBuilder<'_, ()>` from the start, no matter the level, than to
change the guarantee later.
Lots of vectors of messages called `message` or `msg`. This commit
pluralizes them.
Note that `emit_message_default` and `emit_messages_default` both
already existed, and both process a vector, so I renamed the former
`emit_messages_default_inner` because it's called by the latter.
rustc_codegen_ssa: Don't drop `IncorrectCguReuseType` , make `rustc_expected_cgu_reuse` attr work
In [100753], `IncorrectCguReuseType` accidentally stopped being emitted by removing `diag.span_err(...)`. Begin emitting it again rather than just blindly dropping it, and adjust tests accordingly.
We assume that there are no bugs and that the currently actual CGU reuse is correct. If there are bugs, they will be discovered and fixed eventually, and the tests will then be updated.
[100753]: 706452eba7 (diff-048389738ddcbe0f9765291a29db1fed9a5f03693d4781cfb5aaa97ffb3c7f84)Closes#118972
And make all hand-written `IntoDiagnostic` impls generic, by using
`DiagnosticBuilder::new(dcx, level, ...)` instead of e.g.
`dcx.struct_err(...)`.
This means the `create_*` functions are the source of the error level.
This change will let us remove `struct_diagnostic`.
Note: `#[rustc_lint_diagnostics]` is added to `DiagnosticBuilder::new`,
it's necessary to pass diagnostics tests now that it's used in
`into_diagnostic` functions.
[AIX] Fix XCOFF metadata
#118344 accidentally changed the way to get metadata from XCOFF file and broken our internal CI.
This PR reverts part of #118344 .
Currently, we assume that ScalarPair is always represented using
a two-element struct, both as an immediate value and when stored
in memory.
This currently works fairly well, but runs into problems with
https://github.com/rust-lang/rust/pull/116672, where a ScalarPair
involving an i128 type can no longer be represented as a two-element
struct in memory. For example, the tuple `(i32, i128)` needs to be
represented in-memory as `{ i32, [3 x i32], i128 }` to satisfy
alignment requirement. Using `{ i32, i128 }` instead will result in
the second element being stored at the wrong offset (prior to
LLVM 18).
Resolve this issue by no longer requiring that the immediate and
in-memory type for ScalarPair are the same. The in-memory type
will now look the same as for normal struct types (and will include
padding filler and similar), while the immediate type stays a
simple two-element struct type. This also means that booleans in
immediate ScalarPair are now represented as i1 rather than i8,
just like we do everywhere else.
The core change here is to llvm_type (which now treats ScalarPair
as a normal struct) and immediate_llvm_type (which returns the
two-element struct that llvm_type used to produce). The rest is
fixing things up to no longer assume these are the same. In
particular, this switches places that try to get pointers to the
ScalarPair elements to use byte-geps instead of struct-geps.
Add all known `target_feature` configs to check-cfg
This PR adds all the known `target_feature` from ~~`rustc_codegen_ssa`~~ `rustc_target` to the well known list of check-cfg.
It does so by moving the list from `rustc_codegen_ssa` to `rustc_target` ~~`rustc_session` (I not sure about this, but some of the moved function take a `Session`)~~, then using it the `fill_well_known` function.
This already proved to be useful since portable-simd had a bad cfg.
cc `@nnethercote` (since we discussed it in https://github.com/rust-lang/rust/pull/118494)