The previous implementation was inconsistent about transitions that
apply for an init byte. For example, when answering a query, an init
byte could use corresponding init transition. Init byte could also use
uninit transition, but only when the corresponding init transition was
absent. This behaviour was incompatible with DFA union construction.
Define an uninit transition to match an uninit byte only and update
implementation accordingly. To describe that `Tree::uninit` is valid
for any value, build an automaton that accepts any byte value.
Additionally, represent byte ranges uniformly as a pair of integers to
avoid special case for uninit byte.
In the `Tree` and `Dfa` representations of a type's layout, store byte
ranges rather than needing to separately store each byte value. This
permits us to, for example, represent a `u8` using a single 0..=255 edge
in the DFA rather than using 256 separate edges.
This leads to drastic performance improvements. For example, on the
author's 2024 MacBook Pro, the time to convert the `Tree` representation
of a `u64` to its equivalent DFA representation drops from ~8.5ms to
~1us, a reduction of ~8,500x. See `bench_dfa_from_tree`.
Similarly, the time to execute a transmutability query from `u64` to
`u64` drops from ~35us to ~1.7us, a reduction of ~20x. See
`bench_transmute`.
Prior to this commit, the transmutability analysis used an intermediate
NFA representation of type layout. We then determinized this
representation into a DFA, upon which we ran the core transmutability
analysis. Unfortunately, determinizing NFAs is expensive. In this
commit, we avoid NFAs entirely by observing that Rust `union`s are the
only source of nondeterminism and that it is comparatively cheap to
compute the DFA union of DFAs.
We also implement Graphviz DOT debug formatting of DFAs.
Fixesrust-lang/project-safe-transmute#23Fixesrust-lang/project-safe-transmute#24
Revert <https://github.com/rust-lang/rust/pull/138084> to buy time to
consider options that avoids breaking downstream usages of cargo on
distributed `rustc-src` artifacts, where such cargo invocations fail due
to inability to inherit `lints` from workspace root manifest's
`workspace.lints` (this is only valid for the source rust-lang/rust
workspace, but not really the distributed `rustc-src` artifacts).
This breakage was reported in
<https://github.com/rust-lang/rust/issues/138304>.
This reverts commit 48caf81484, reversing
changes made to c6662879b2.
By naming them in `[workspace.lints.rust]` in the top-level
`Cargo.toml`, and then making all `compiler/` crates inherit them with
`[lints] workspace = true`. (I omitted `rustc_codegen_{cranelift,gcc}`,
because they're a bit different.)
The advantages of this over the current approach:
- It uses a standard Cargo feature, rather than special handling in
bootstrap. So, easier to understand, and less likely to get
accidentally broken in the future.
- It works for proc macro crates.
It's a shame it doesn't work for rustc-specific lints, as the comments
explain.
- `check-pass` test for a MRE of #135020
- fail test for #135138
- switch to `TooGeneric` for checking CMSE fn signatures
- switch to `TooGeneric` for compute `SizeSkeleton` (for transmute)
- fix broken tests
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.
the behavior of the type system not only depends on the current
assumptions, but also the currentnphase of the compiler. This is
mostly necessary as we need to decide whether and how to reveal
opaque types. We track this via the `TypingMode`.
Add `LayoutS::is_uninhabited` and use it
Use accessors for the things that accessors are good at: reducing everyone's need to be nosy and peek at the internals of every data structure.