This adds a new lint to `rustc` that is used in rustdoc when a code
block is empty or cannot be parsed as valid Rust code.
Previously this was unconditionally a warning. As such some
documentation comments were (unknowingly) abusing this to pass despite
the `-Dwarnings` used when compiling `rustc`, this should not be the
case anymore.
Remove CrateNum parameter for queries that only work on local crate
The pervasive `CrateNum` parameter is a remnant of the multi-crate rustc idea.
Using `()` as query key in those cases avoids having to worry about the validity of the query key.
Rework `on_completion` method so that it removes all
provisional cache entries that are "below" a completed
node (while leaving those entries that are not below
the node).
This corrects an imprecise result that could in turn lead
to an incremental compilation failure. Under the old
scheme, if you had:
* A depends on...
* B depends on A
* C depends on...
* D depends on C
* T: 'static
then the provisional results for A, B, C, and D would all
be entangled. Thus, if A was `EvaluatedToOkModuloRegions`
(because of that final condition), then the result for C and
D would also be demoted to "ok modulo regions".
In reality, though, the result for C depends only on C and itself,
and is not dependent on regions. If we happen to evaluate the
cycle starting from C, we would never reach A, and hence the
result would be "ok".
Under the new scheme, the provisional results for C and D
are moved to the permanent cache immediately and are not affected
by the result of A.
Deduplicate ParamCandidates with the same value except for bound vars
Fixes#84398
This is kind of a hack. I wonder if we can get other types of candidates that are the same except for bound vars. This won't be a problem with Chalk, since we don't really need to know that there are two different "candidates" if they both give the same final substitution.
r? `@nikomatsakis`
Add more info for common trait resolution and async/await errors
* Suggest `Pin::new`/`Box::new`/`Arc::new`/`Box::pin` in more cases
* Point at `impl` and type defs introducing requirements on E0277
normalize mir::Constant differently from ty::Const in preparation for valtrees
Valtrees are unable to represent many kind of constant values (this is on purpose). For constants that are used at runtime, we do not need a valtree representation and can thus use a different form of evaluation. In order to make this explicit and less fragile, I added a `fold_constant` method to `TypeFolder` and implemented it for normalization. Normalization can now, when it wants to eagerly evaluate a constant, normalize `mir::Constant` directly into a `mir::ConstantKind::Val` instead of relying on the `ty::Const` evaluation.
In the future we can get rid of the `ty::Const` in there entirely and add our own `Unevaluated` variant to `mir::ConstantKind`. This would allow us to remove the `promoted` field from `ty::ConstKind::Unevaluated`, as promoteds can never occur in the type system.
cc `@rust-lang/wg-const-eval`
r? `@lcnr`
Fix expected/found order on impl trait projection mismatch error
fixes#68561
This PR adds a new `ObligationCauseCode` used when checking the concrete type of an impl trait satisfies its bounds, and checks for that cause code in the existing test to see if a projection's normalized type should be the "expected" or "found" type.
The second commit adds a `peel_derives` to that test, which appears to be necessary in some cases (see projection-mismatch-in-impl-where-clause.rs, which would still give expected/found in the wrong order otherwise). This caused some other changes in diagnostics not involving impl trait, but they look correct to me.
Stream the dep-graph to a file instead of storing it in-memory.
This is a reimplementation of #60035.
Instead of storing the dep-graph in-memory, the nodes are encoded as they come
into the a temporary file as they come. At the end of a successful the compilation,
this file is renamed to be the persistent dep-graph, to be decoded during the next
compilation session.
This two-files scheme avoids overwriting the dep-graph on unsuccessful or crashing compilations.
The structure of the file is modified to be the sequence of `(DepNode, Fingerprint, EdgesVec)`.
The deserialization is responsible for going to the more compressed representation.
The `node_count` and `edge_count` are stored in the last 16 bytes of the file,
in order to accurately reserve capacity for the vectors.
At the end of the compilation, the encoder is flushed and dropped.
The graph is not usable after this point: any creation of a node will ICE.
I had to retrofit the debugging options, which is not really pretty.
Found with https://github.com/est31/warnalyzer.
Dubious changes:
- Is anyone else using rustc_apfloat? I feel weird completely deleting
x87 support.
- Maybe some of the dead code in rustc_data_structures, in case someone
wants to use it in the future?
- Don't change rustc_serialize
I plan to scrap most of the json module in the near future (see
https://github.com/rust-lang/compiler-team/issues/418) and fixing the
tests needed more work than I expected.
TODO: check if any of the comments on the deleted code should be kept.
Add function core::iter::zip
This makes it a little easier to `zip` iterators:
```rust
for (x, y) in zip(xs, ys) {}
// vs.
for (x, y) in xs.into_iter().zip(ys) {}
```
You can `zip(&mut xs, &ys)` for the conventional `iter_mut()` and
`iter()`, respectively. This can also support arbitrary nesting, where
it's easier to see the item layout than with arbitrary `zip` chains:
```rust
for ((x, y), z) in zip(zip(xs, ys), zs) {}
for (x, (y, z)) in zip(xs, zip(ys, zs)) {}
// vs.
for ((x, y), z) in xs.into_iter().zip(ys).zip(xz) {}
for (x, (y, z)) in xs.into_iter().zip((ys.into_iter().zip(xz)) {}
```
It may also format more nicely, especially when the first iterator is a
longer chain of methods -- for example:
```rust
iter::zip(
trait_ref.substs.types().skip(1),
impl_trait_ref.substs.types().skip(1),
)
// vs.
trait_ref
.substs
.types()
.skip(1)
.zip(impl_trait_ref.substs.types().skip(1))
```
This replaces the tuple-pair `IntoIterator` in #78204.
There is prior art for the utility of this in [`itertools::zip`].
[`itertools::zip`]: https://docs.rs/itertools/0.10.0/itertools/fn.zip.html
Fixes#80691
When we evaluate a trait predicate, we convert an
`EvaluatedToOk` result to `EvaluatedToOkModuloRegions` if we erased any
regions. We cache the result under a region-erased 'freshened'
predicate, so `EvaluatedToOk` may not be correct for other predicates
that have the same cache key.
This currently creates a field which is always false on GenericParamDefKind for future use when
consts are permitted to have defaults
Update const_generics:default locations
Previously just ignored them, now actually do something about them.
Fix using type check instead of value
Add parsing
This adds all the necessary changes to lower const-generics defaults from parsing.
Change P<Expr> to AnonConst
This matches the arguments passed to instantiations of const generics, and makes it specific to
just anonymous constants.
Attempt to fix lowering bugs
const_evaluatable_checked: Stop eagerly erroring in `is_const_evaluatable`
Fixes#82279
We don't want to be emitting errors inside of is_const_evaluatable because we may call this during selection where it should be able to fail silently
There were two errors being emitted in `is_const_evaluatable`. The one causing the compile error in #82279 was inside the match arm for `FailureKind::MentionsParam` but I moved the other error being emitted too since it made things cleaner imo
The `NotConstEvaluatable` enum \*should\* have a fourth variant for when we fail to evaluate a concrete const, e.g. `0 - 1` but that cant happen until #81339
cc `@oli-obk` `@lcnr`
r? `@nikomatsakis`
Implement (but don't use) valtree and refactor in preparation of use
This PR does not cause any functional change. It refactors various things that are needed to make valtrees possible. This refactoring got big enough that I decided I'd want it reviewed as a PR instead of trying to make one huge PR with all the changes.
cc `@rust-lang/wg-const-eval` on the following commits:
* 2027184 implement valtree
* eeecea9 fallible Scalar -> ScalarInt
* 042f663 ScalarInt convenience methods
cc `@eddyb` on ef04a6d
cc `@rust-lang/wg-mir-opt` for cf1700c (`mir::Constant` can now represent either a `ConstValue` or a `ty::Const`, and it is totally possible to have two different representations for the same value)
Change x64 size checks to not apply to x32.
Rust contains various size checks conditional on target_arch = "x86_64", but these checks were never intended to apply to x86_64-unknown-linux-gnux32. Add target_pointer_width = "64" to the conditions.
Rust contains various size checks conditional on target_arch = "x86_64",
but these checks were never intended to apply to
x86_64-unknown-linux-gnux32. Add target_pointer_width = "64" to the
conditions.
Rollup of 10 pull requests
Successful merges:
- #80189 (Convert primitives in the standard library to intra-doc links)
- #80874 (Update intra-doc link documentation to match the implementation)
- #82376 (Add option to enable MIR inlining independently of mir-opt-level)
- #82516 (Add incomplete feature gate for inherent associate types.)
- #82579 (Fix turbofish recovery with multiple generic args)
- #82593 (Teach rustdoc how to display WASI.)
- #82597 (Get TyCtxt from self instead of passing as argument in AutoTraitFinder)
- #82627 (Erase late bound regions to avoid ICE)
- #82661 (⬆️ rust-analyzer)
- #82691 (Update books)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Apparently #35870 caused a problem in this code (which originally
returned an impl trait) and `#[inline]` was added as a workaround, in
ade79d7609.
The issue is now fixed and the comment and `#[inline]` can now be
removed.
Skip Ty w/o infer ty/const in trait select
Remove some allocations & also add `skip_current_subtree` to skip subtrees with no inferred items.
r? `@eddyb` since marked in the FIXME
Make `Clean` take &mut DocContext
- Take `FnMut` in `rustc_trait_selection::find_auto_trait_generics`
- Take `&mut DocContext` in most of `clean`
- Collect the iterator in auto_trait_impls instead of iterating lazily; the lifetimes were really bad.
This combined with https://github.com/rust-lang/rust/pull/82018 should hopefully help with https://github.com/rust-lang/rust/pull/82014 by allowing `cx.cache.exported_traits` to be modified in `register_res`. Previously it had to use interior mutability, which required either adding a RefCell to `cache.exported_traits` on *top* of the existing `RefCell<Cache>` or mixing reads and writes between `cx.exported_traits` and `cx.cache.exported_traits`. I don't currently have that working but I expect it to be reasonably easy to add after this.
name async generators something more human friendly in type error diagnostic
fixes#81457
Some details:
1. I opted to load the generator kind from the hir in TyCategory. I also use 1 impl in the hir for the descr
2. I named both the source of the future, in addition to the general type (`future`), not sure what is preferred
3. I am not sure what is required to make sure "generator" is not referred to anywhere. A brief `rg "\"generator\"" showed me that most diagnostics correctly distinguish from generators and async generator, but the `descr` of `DefKind` is pretty general (not sure how thats used)
4. should the descr impl of AsyncGeneratorKind use its display impl instead of copying the string?
const_generics: Dont evaluate array length const when handling yet another error
Same ICE as #82009 except triggered by a different error.
cc ``@lcnr``
r? ``@varkor``
Ensure valid TraitRefs are created for GATs
This fixes `ProjectionTy::trait_ref` to use the correct substs. Places that need all of the substs have been updated to not use `trait_ref`.
r? ````@jackh726````
Implement RFC 2580: Pointer metadata & VTable
RFC: https://github.com/rust-lang/rfcs/pull/2580
~~Before merging this PR:~~
* [x] Wait for the end of the RFC’s [FCP to merge](https://github.com/rust-lang/rfcs/pull/2580#issuecomment-759145278).
* [x] Open a tracking issue: https://github.com/rust-lang/rust/issues/81513
* [x] Update `#[unstable]` attributes in the PR with the tracking issue number
----
This PR extends the language with a new lang item for the `Pointee` trait which is special-cased in trait resolution to implement it for all types. Even in generic contexts, parameters can be assumed to implement it without a corresponding bound.
For this I mostly imitated what the compiler was already doing for the `DiscriminantKind` trait. I’m very unfamiliar with compiler internals, so careful review is appreciated.
This PR also extends the standard library with new unstable APIs in `core::ptr` and `std::ptr`:
```rust
pub trait Pointee {
/// One of `()`, `usize`, or `DynMetadata<dyn SomeTrait>`
type Metadata: Copy + Send + Sync + Ord + Hash + Unpin;
}
pub trait Thin = Pointee<Metadata = ()>;
pub const fn metadata<T: ?Sized>(ptr: *const T) -> <T as Pointee>::Metadata {}
pub const fn from_raw_parts<T: ?Sized>(*const (), <T as Pointee>::Metadata) -> *const T {}
pub const fn from_raw_parts_mut<T: ?Sized>(*mut (),<T as Pointee>::Metadata) -> *mut T {}
impl<T: ?Sized> NonNull<T> {
pub const fn from_raw_parts(NonNull<()>, <T as Pointee>::Metadata) -> NonNull<T> {}
/// Convenience for `(ptr.cast(), metadata(ptr))`
pub const fn to_raw_parts(self) -> (NonNull<()>, <T as Pointee>::Metadata) {}
}
impl<T: ?Sized> *const T {
pub const fn to_raw_parts(self) -> (*const (), <T as Pointee>::Metadata) {}
}
impl<T: ?Sized> *mut T {
pub const fn to_raw_parts(self) -> (*mut (), <T as Pointee>::Metadata) {}
}
/// `<dyn SomeTrait as Pointee>::Metadata == DynMetadata<dyn SomeTrait>`
pub struct DynMetadata<Dyn: ?Sized> {
// Private pointer to vtable
}
impl<Dyn: ?Sized> DynMetadata<Dyn> {
pub fn size_of(self) -> usize {}
pub fn align_of(self) -> usize {}
pub fn layout(self) -> crate::alloc::Layout {}
}
unsafe impl<Dyn: ?Sized> Send for DynMetadata<Dyn> {}
unsafe impl<Dyn: ?Sized> Sync for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Debug for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Unpin for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Copy for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Clone for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Eq for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> PartialEq for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Ord for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> PartialOrd for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Hash for DynMetadata<Dyn> {}
```
API differences from the RFC, in areas noted as unresolved questions in the RFC:
* Module-level functions instead of associated `from_raw_parts` functions on `*const T` and `*mut T`, following the precedent of `null`, `slice_from_raw_parts`, etc.
* Added `to_raw_parts`
- Take `FnMut` in `rustc_trait_selection::find_auto_trait_generics`
- Take `&mut DocContext` in most of `clean`
- Collect the iterator in auto_trait_impls instead of iterating lazily; the lifetimes were really bad.
- Changes `fn sess` to properly return a borrow with the lifetime of `'tcx`, not the mutable borrow.
Suggest to create a new `const` item if the `fn` in the array is a `const fn`
Fixes#73734. If the `fn` in the array repeat expression is a `const fn`, suggest creating a new `const` item. On nightly, suggest creating an inline `const` block. This PR also removes the `suggest_const_in_array_repeat_expressions` as it is no longer necessary.
Example:
```rust
fn main() {
// Should not compile but hint to create a new const item (stable) or an inline const block (nightly)
let strings: [String; 5] = [String::new(); 5];
println!("{:?}", strings);
}
```
Gives this error:
```
error[E0277]: the trait bound `std::string::String: std::marker::Copy` is not satisfied
--> $DIR/const-fn-in-vec.rs:3:32
|
2 | let strings: [String; 5] = [String::new(); 5];
| ^^^^^^^^^^^^^^^^^^ the trait `std::marker::Copy` is not implemented for `String`
|
= note: the `Copy` trait is required because the repeated element will be copied
```
With this change, this is the error message:
```
error[E0277]: the trait bound `String: Copy` is not satisfied
--> $DIR/const-fn-in-vec.rs:3:32
|
LL | let strings: [String; 5] = [String::new(); 5];
| ^^^^^^^^^^^^^^^^^^ the trait `Copy` is not implemented for `String`
|
= help: moving the function call to a new `const` item will resolve the error
```
Use debug log level for developer oriented logs
The information logged here is of limited general interest, while at the
same times makes it impractical to simply enable logging and share the
resulting logs due to the amount of the output produced.
Reduce log level from info to debug for developer oriented information.
For example, when building cargo, this reduces the amount of logs
generated by `RUSTC_LOG=info cargo build` from 265 MB to 79 MB.
Continuation of changes from 81350.
The information logged here is of limited general interest, while at the
same times makes it impractical to simply enable logging and share the
resulting logs due to the amount of the output produced.
Reduce log level from info to debug for developer oriented information.
For example, when building cargo, this reduces the amount of logs
generated by `RUSTC_LOG=info cargo build` from 265 MB to 79 MB.
Continuation of changes from 81350.
Try fast_reject::simplify_type in coherence before doing full check
This is a reattempt at landing #69010 (by `@jonas-schievink).` The change adds a fast path for coherence checking to see if there's no way for types to unify since full coherence checking can be somewhat expensive.
This has big effects on code generated by the [`windows`](https://github.com/microsoft/windows-rs) which in some cases spends as much as 20% of compilation time in the `specialization_graph_of` query. In local benchmarks this took a compilation that previously took ~500 seconds down to ~380 seconds.
This is surely not going to make a difference on much smaller crates, so the question is whether it will have a negative impact. #69010 was closed because some of the perf suite crates did show small regressions.
Additional discussion of this issue is happening [here](https://rust-lang.zulipchat.com/#narrow/stream/247081-t-compiler.2Fperformance/topic/windows-rs.20perf).
Make suggestion of changing mutability of arguments broader
Fix#81421
Previously rustc tries to emit the suggestion of changing mutablity unless `!trait_ref.has_infer_types_or_consts() && self.predicate_can_apply(obligation.param_env, trait_ref)` and this led to some false negatives to occur.
Reduce log level used by tracing instrumentation from info to debug
Restore log level to debug to avoid make info log level overly verbose (the uses of instrument attribute modified there, were for the most part a replacement for `debug!`; one use was novel).
Allow Trait inheritance with cycles on associated types take 2
This reverts the revert of #79209 and fixes the ICEs that's occasioned by that PR exposing some problems that are addressed in #80648 and #79811.
For easier review I'd say, check only the last commit, the first one is just a revert of the revert of #79209 which was already approved.
This also could be considered part or the actual fix of #79560 but I guess for that to be closed and fixed completely we would need to land #80648 and #79811 too.
r? `@nikomatsakis`
cc `@Aaron1011`
relax adt unsizing requirements
Changes unsizing of structs in case the last struct field shares generic params with other adt fields which do not change.
This change is currently insta stable and changes the language, so it at least requires a lang fcp. I feel like the current state is fairly unintuitive.
An example for what's now allowed would be https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=6dd331d23f5c9ffc8c978175aae2e967
```rust
struct A<T, U: ?Sized>(T, B<T, U>); // previously ERR
// struct A<T, U: ?Sized>(T, B<[u32; 1], U>); // ok
struct B<T, U: ?Sized>(T, U);
fn main() {
let x = A([0; 1], B([0; 1], [0; 1]));
let y: &A<[u32; 1], [u32]> = &x;
assert_eq!(y.1.1.len(), 1);
}
```
Add better diagnostic for unbounded Abst. Const
~~In the case where a generic abst. const requires a trivial where bound: `where TypeWithConst<const_fn(N)>: ,`,
instead of requiring a where bound, just check that only consts are being substituted in to skip over where check.~~
~~This is pretty sketchy, but I think it works. Presumably, if there is checking for type bounds added later, it can first check nested requirements, and see if they're satisfied by the current `ParamEnv`.~~
Changed the diagnostic to add a better example, which is more practical than what was previously proposed.
r? ```@lcnr```
Add error message for private fn
Attempts to add a more detailed error when a `const_evaluatable` fn from another scope is used inside of a scope which cannot access it.
r? ````@lcnr````
Remove const_in_array_repeat
Fixes#80371. Fixes#81315. Fixes#80767. Fixes#75682.
I thought there might be some issue with `Repeats(_, 0)`, but if you increase the items in the array it still ICEs. I'm not sure if this is the best fix but it does fix the given issue.
Stabilize by-value `[T; N]` iterator `core::array::IntoIter`
Tracking issue: https://github.com/rust-lang/rust/issues/65798
This is unblocked now that `min_const_generics` has been stabilized in https://github.com/rust-lang/rust/pull/79135.
This PR does *not* include the corresponding `IntoIterator` impl, which is https://github.com/rust-lang/rust/pull/65819. Instead, an iterator can be constructed through the `new` method.
`new` would become unnecessary when `IntoIterator` is implemented and might be deprecated then, although it will stay stable.
Make hitting the recursion limit in projection non-fatal
This change was originally made in #80246 to avoid future (effectively) infinite loop bugs in projections,
but wundergraph relies on rustc recovering here.
cc #80953
r? `@nikomatsakis`
Refine "remove semicolon" suggestion in trait selection
Don't suggest it if the last statement doesn't have a semicolon
Fixes#81098
See also #54771 for why this suggestion was added
Improve diagnostics when closure doesn't meet trait bound
Improves the diagnostics when closure doesn't meet trait bound by modifying `TypeckResuts::closure_kind_origins` such that `hir::Place` is used instead of `Symbol`. Using `hir::Place` to describe which capture influenced the decision of selecting a trait a closure satisfies to (Fn/FnMut/FnOnce, Copy) allows us to show precise path in the diagnostics when `capture_disjoint_field` feature is enabled.
Closes rust-lang/project-rfc-2229/issues/21
r? ```@nikomatsakis```
Don't try to add nested predicate to Rustdoc auto-trait `ParamEnv`
Fixes#80233
We already have logic in `evaluate_predicates` that tries to add
unimplemented predicates to our `ParamEnv`. Trying to add a predicate
that already holds can lead to errors later on, since projection
will prefer trait candidates from the `ParamEnv` to predicates from an
impl.
Separate out a `hir::Impl` struct
This makes it possible to pass the `Impl` directly to functions, instead
of having to pass each of the many fields one at a time. It also
simplifies matches in many cases.
See `rustc_save_analysis::dump_visitor::process_impl` or `rustdoc::clean::clean_impl` for a good example of how this makes `impl`s easier to work with.
r? `@petrochenkov` maybe?
This makes it possible to pass the `Impl` directly to functions, instead
of having to pass each of the many fields one at a time. It also
simplifies matches in many cases.
Make CTFE able to check for UB...
... by not doing any optimizations on the `const fn` MIR used in CTFE. This means we duplicate all `const fn`'s MIR now, once for CTFE, once for runtime. This PR is for checking the perf effect, so we have some data when talking about https://github.com/rust-lang/const-eval/blob/master/rfcs/0000-const-ub.md
To do this, we now have two queries for obtaining mir: `optimized_mir` and `mir_for_ctfe`. It is now illegal to invoke `optimized_mir` to obtain the MIR of a const/static item's initializer, an array length, an inline const expression or an enum discriminant initializer. For `const fn`, both `optimized_mir` and `mir_for_ctfe` work, the former returning the MIR that LLVM should use if the function is called at runtime. Similarly it is illegal to invoke `mir_for_ctfe` on regular functions.
This is all checked via appropriate assertions and I don't think it is easy to get wrong, as there should be no `mir_for_ctfe` calls outside the const evaluator or metadata encoding. Almost all rustc devs should keep using `optimized_mir` (or `instance_mir` for that matter).