Implement Modified Condition/Decision Coverage
This is an implementation based on llvm backend support (>= 18) by `@evodius96` and branch coverage support by `@Zalathar.`
### Major changes:
* Add -Zcoverage-options=mcdc as switch. Now coverage options accept either `no-branch`, `branch`, or `mcdc`. `mcdc` also enables `branch` because it is essential to work.
* Add coverage mapping for MCDCBranch and MCDCDecision. Note that MCDCParameter evolves from llvm 18 to llvm 19. The mapping in rust side mainly references to 19 and is casted to 18 types in llvm wrapper.
* Add wrapper for mcdc instrinc functions from llvm. And inject associated statements to mir.
* Add BcbMappingKind::Decision, I'm not sure is it proper but can't find a better way temporarily.
* Let coverage-dump support parsing MCDCBranch and MCDCDecision from llvm ir.
* Add simple tests to check whether mcdc works.
* Same as clang, currently rustc does not generate instrument for decision with more than 6 condtions or only 1 condition due to considerations of resource.
### Implementation Details
1. To get information about conditions and decisions, `MCDCState` in `BranchInfoBuilder` is used during hir lowering to mir. For expressions with logical op we call `Builder::visit_coverage_branch_operation` to record its sub conditions, generate condition ids for them and save their spans (to construct the span of whole decision). This process mainly references to the implementation in clang and is described in comments over `MCDCState::record_conditions`. Also true marks and false marks introduced by branch coverage are used to detect where the decision evaluation ends: the next id of the condition == 0.
2. Once the `MCDCState::decision_stack` popped all recorded conditions, we can ensure that the decision is checked over and push it into `decision_spans`. We do not manually insert decision span to avoid complexity from then_else_break in nested if scopes.
3. When constructing CoverageSpans, add condition info to BcbMappingKind::Branch and decision info to BcbMappingKind::Decision. If the branch mapping has non-zero condition id it will be transformed to MCDCBranch mapping and insert `CondBitmapUpdate` statements to its evaluated blocks. While decision bcb mapping will insert `TestVectorBitmapUpdate` in all its end blocks.
### Usage
```bash
echo "[build]\nprofiler=true" >> config.toml
./x build --stage 1
./x test tests/coverage/mcdc_if.rs
```
to build the compiler and run tests.
```shell
export PATH=path/to/llvm-build:$PATH
rustup toolchain link mcdc build/host/stage1
cargo +mcdc rustc --bin foo -- -Cinstrument-coverage -Zcoverage-options=mcdc
cd target/debug
LLVM_PROFILE_FILE="foo.profraw" ./foo
llvm-profdata merge -sparse foo.profraw -o foo.profdata
llvm-cov show ./foo -instr-profile=foo.profdata --show-mcdc
```
to check "foo" code.
### Problems to solve
For now decision mapping will insert statements to its all end blocks, which may be optimized by inserting a final block of the decision. To do this we must also trace the evaluated value at each end of the decision and join them separately.
This implementation is not heavily tested so there should be some unrevealed issues. We are going to check our rust products in the next. Please let me know if you had any suggestions or comments.
Disable SimplifyToExp in MatchBranchSimplification
Due to the miscompilation mentioned in #124150, We need to disable MatchBranchSimplification temporarily.
To fully resolve this issue, my plan is:
1. Disable SimplifyToExp in MatchBranchSimplification (this PR).
2. Remove all potentially unclear transforms in #124122.
3. Gradually add back the removed transforms (possibly multiple PRs).
r? `@Nilstrieb` or `@oli-obk`
async closure coroutine by move body MirPass refactoring
Unsure about the last commit, but I think the other changes help in simplifying the control flow
Stop making any assumption about the projections applied to the upvars in the `ByMoveBody` pass
So it turns out that because of subtle optimizations like [`truncate_capture_for_optimization`](ab5bda1aa7/compiler/rustc_hir_typeck/src/upvar.rs (L2351)), we simply cannot make any assumptions about the shape of the projections applied to the upvar locals in a coroutine body.
So stop doing that -- the code is resilient to such projections, so the assertion really existed only to "protect against the unknown".
r? oli-obk
Fixes#123650
Re-enable the early otherwise branch optimization
Closes#95162. Fixes#119014.
This is the first part of #121397.
An invalid enum discriminant can come from anywhere. We have to check to see if all successors contain the discriminant statement. This should have a pass to hoist instructions.
r? cjgillot
Fix `ByMove` coroutine-closure shim (for 2021 precise closure capturing behavior)
This PR reworks the way that we perform the `ByMove` coroutine-closure shim to account for the fact that the upvars of the outer coroutine-closure and the inner coroutine might not line up due to edition-2021 closure capture rules changes.
Specifically, the number of upvars may differ *and/or* the inner coroutine may have additional projections applied to an upvar. This PR reworks the information we pass into the `ByMoveBody` MIR visitor to account for both of these facts.
I tried to leave comments explaining exactly what everything is doing, but let me know if you have questions.
r? oli-obk
Actually use the inferred `ClosureKind` from signature inference in coroutine-closures
A follow-up to https://github.com/rust-lang/rust/pull/123349, which fixes another subtle bug: We were not taking into account the async closure kind we infer during closure signature inference.
When I pass a closure directly to an arg like `fn(x: impl async FnOnce())`, that should have the side-effect of artificially restricting the kind of the async closure to `ClosureKind::FnOnce`. We weren't doing this -- that's a quick fix; however, it uncovers a second, more subtle bug with the way that `move`, async closures, and `FnOnce` interact.
Specifically, when we have an async closure like:
```
let x = Struct;
let c = infer_as_fnonce(async move || {
println!("{x:?}");
}
```
The outer closure captures `x` by move, but the inner coroutine still immutably borrows `x` from the outer closure. Since we've forced the closure to by `async FnOnce()`, we can't actually *do* a self borrow, since the signature of `AsyncFnOnce::call_once` doesn't have a borrowed lifetime. This means that all `async move` closures that are constrained to `FnOnce` will fail borrowck.
We can fix that by detecting this case specifically, and making the *inner* async closure `move` as well. This is always beneficial to closure analysis, since if we have an `async FnOnce()` that's `move`, there's no reason to ever borrow anything, so `move` isn't artificially restrictive.
Cleanup: Rename `HAS_PROJECTIONS` to `HAS_ALIASES` etc.
The name of the bitflag `HAS_PROJECTIONS` and of its corresponding method `has_projections` is quite historical dating back to a time when projections were the only kind of alias type.
I think it's time to update it to clear up any potential confusion for newcomers and to reduce unnecessary friction during contributor onboarding.
r? types