arm: add unstable soft-float target feature
This has an actual usecase as mentioned [here](https://github.com/rust-lang/rust/issues/116344#issuecomment-2575324988), and with my recent ARM float ABI changes there shouldn't be any soundness concerns any more. We will reject enabling this feature on `hf` targets, but disabling it on non-`hf` targets is entirely fine -- the target feature refers to whether softfloat emulation is used for float instructions, and is independent of the ABI which we set separately via `llvm_floatabi`.
Cc ``@workingjubilee``
Convert typeck constraints in location-sensitive polonius
In this PR, we do a big chunk of the work of localizing regular outlives constraints.
The slightly annoying thing is handling effectful statements: usually the subset graph propagates loans at a single point between regions, and liveness propagates loans between points within a single region, but some statements have effects applied on exit.
This was also a problem before, in datalog polonius terms and Niko's solution at the time, this is about: the mid-point. The idea was to duplicate all MIR locations into two physical points, and orchestrate the effects with that. Somewhat easier to do, but double the CFG.
We've always believed we didn't _need_ midpoints in principle, as we can represent changes on exit as on happening entry to the successor, but there's some difficulty in tracking the position information at sufficient granularity through outlives relation (especially since we also have bidirectional edges and time-traveling now).
Now, that is surely what we should be doing in the future. In the mean time, I infer this from the kind of statement/terminator where an outlives constraint arose. It's not particularly complicated but some explanation will help clarify the code.
Assignments (in their various forms) are the quintessential example of these crossover cases: loans that would flow into the LHS would not be visible on entry to the point but on exit -- so we'll localize these edges to the successor. Let's look at a real-world example, involving invariance for bidirectional edges:
```rust
let mut _1: HashMap<i32, &'7 i32>;
let mut _3: &'9 mut HashMap<i32, &'10 i32>;
...
/* at bb1[3]: */ _3 = &'3 mut _1;
```
Here, typeck expectedly produces 3 outlives constraints today:
1. `'3 -> '9`
2. `'7 -> '10`
3. `'10 -> '7`
And we localize them like so,
1. `'3 -> '9` flows into the LHS and becomes: `3_bb1_3 -> 9_bb1_4`
2. `'7 -> '10` flows into the LHS and becomes: `7_bb1_3 -> 10_bb1_4`
3. `'10 -> '7` flows from the LHS and becomes: `10_bb1_4 -> 7_bb1_3` (time traveling 👌)
---
r? ``@jackh726``
To keep you entertained during the holidays I also threw in a couple of small changes removing cruft in the borrow checker.
We're actually getting there. The next PR will be the last one needed to get end-to-end tests working.
Use a post-monomorphization typing env when mangling components that come from impls
When mangling associated methods of impls, we were previously using the wrong param-env. Instead of using a fully monomorphized param-env like we usually do in codegen, we were taking the post-analysis param-env, and treating it as an early binder to *re-substitute* the impl args. I've pointed out the problematic old code in an inline comment.
This would give us param-envs with possibly trivial predicates that would prevent normalization via param-env shadowing.
In the example test linked below, `tests/ui/symbol-names/normalize-in-param-env.rs`, this happens when we mangle the impl `impl<P: Point2> MyFrom<P::S> for P` with the substitution `P = Vec2`. Because the where clause of the impl is `P: Point2`, which elaborates to `[P: Point2, P: Point, <P as Point>::S projects-to <P as Point2>::S2]` and the fact that `impl Point2 for Vec2` normalizes `Vec2::S2` to `Vec2::S`, this causes a cycle.
The proper fix here is to use a fully monomorphized param-env for the case where the impl is properly substituted.
Fixes#135143
While #134081 uncovered this bug for legacy symbol mangling, it was preexisting for v0 symbol mangling. This PR fixes both. The test requires a "hack" because we strip the args of the instance we're printing for legacy symbol mangling except for drop glue, so we box a closure to ensure we generate drop glue.
r? oli-obk
Normalize each signature input/output in `typeck_with_fallback` with its own span
Applies the same hack as #106582 but to the args in typeck. Greatly improves normalization error spans from a signature.
remove unnecessary `eval_verify_bound`
This does not impact any tests. I feel like any cases where this could useful should instead be fixed by a general improvement to `eval_verify_bound` to avoid having to promote this `TypeTest` in the first place 🤔
r? types cc ``@nikomatsakis``
Avoid naming variables `str`
This renames variables named `str` to other names, to make sure `str`
always refers to a type.
It's confusing to read code where `str` (or another standard type name)
is used as an identifier. It also produces misleading syntax
highlighting.
llvm: Ignore error value that is always false
See llvm/llvm-project#121851
For LLVM 20+, this function (`renameModuleForThinLTO`) has no return value. For prior versions of LLVM, this never failed, but had a signature which allowed an error value people were handling.
`@rustbot` label: +llvm-main
r? `@nikic`
Wait a moment before approving while the llvm-main infrastructure picks it up.
This renames variables named `str` to other names, to make sure `str`
always refers to a type.
It's confusing to read code where `str` (or another standard type name)
is used as an identifier. It also produces misleading syntax
highlighting.
Avoid replacing the definition of `CURRENT_RUSTC_VERSION`
Before this PR, replace-version-placeholder hardcoded the path defining CURRENT_RUSTC_VERSION (to avoid replacing it). After a refactor moved the file defining it without changing the hardcoded path, the tool started replacing the constant itself with the version number.
To avoid this from happening in the future, this changes the definition of the constant to avoid the tool from ever matching it.
r? `@workingjubilee`
mark deprecated option as deprecated in rustc_session to remove copypasta and small refactor
This marks deprecated options as deprecated via flag in options table in rustc_session, which removes copypasted deprecation text from rustc_driver_impl.
This also adds warning for deprecated `-C ar` option, which didn't emitted any warnings before.
Makes `inline_threshold` `[UNTRACKED]`, as it do nothing.
Adds few tests.
See individual commits.
Suggest to replace tuple constructor through projection
See the code example. when `Self::Assoc` normalizes to a struct that has a tuple constructor, you cannot construct the type via `Self::Assoc(field, field)`. Instead, suggest to replace it with the correct named struct.
Fixes#120871
Don't ice on bad transmute in typeck in new solver
Old trait solver ends up getting its infcx tainted because we try to normalize the type, but the new trait solver doesn't. This means we try to compute the stalled transmute obligations, which tries to normalize a type an ICEs. Let's make this a delayed bug.
r? lcnr
Improve diagnostics for `HostEffectPredicate` in the new solver
Adds derived cause for host effect predicates. Some diagnostics regress, but that's connected to the fact that our predicate visitor doesn't play well with aliases just yet.
Add support for wasm exception handling to Emscripten target
This is a draft because we need some additional setting for the Emscripten target to select between the old exception handling and the new exception handling. I don't know how to add a setting like that, would appreciate advice from Rust folks. We could maybe choose to use the new exception handling if `Ctarget-feature=+exception-handling` is passed? I tried this but I get errors from llvm so I'm not doing it right.
See llvm/llvm-project#121851
For LLVM 20+, this function (`renameModuleForThinLTO`) has no return
value. For prior versions of LLVM, this never failed, but had a
signature which allowed an error value people were handling.
The SCCs of the region graph are not a reliable heuristic to use for blaming an interesting
constraint for diagnostics. For region errors, if the outlived region is `'static`, or the involved
types are invariant in their lifetiems, there will be cycles in the constraint graph containing both
the target region and the most interesting constraints to blame. To get better diagnostics in these
cases, this commit removes that heuristic.
`ExtraConstraintInfo` was used only for a single subdiagnostic, so this moves the logic for that
to its own function and eliminates the indirection. In order to do so cleanly, this also changes
the arguments to `BorrowExplanation::add_explanation_to_diagnostic`, which happens to simplify its
call sites.
Before this commit, replace-version-placeholder hardcoded the path
defining CURRENT_RUSTC_VERSION (to avoid replacing it). After a refactor
moved the file defining it without changing the hardcoded path, the tool
started replacing the constant itself with the version number.
To avoid this from happening in the future, this changes the definition
of the constant to avoid the tool from ever matching it.
Suppress host effect predicates if underlying trait doesn't hold
Don't report two errors for when the (`HostEffectPredicate`) `T: const Trait` isn't implemented because (`TraitPredicate`) `T: Trait` doesn't even hold.
Use `PostBorrowckAnalysis` in `check_coroutine_obligations`
This currently errors with:
```
error: concrete type differs from previous defining opaque type use
--> tests/ui/coroutine/issue-52304.rs:10:21
|
10 | pub fn example() -> impl Coroutine {
| ^^^^^^^^^^^^^^ expected `{example::{closure#0} upvar_tys=() resume_ty=() yield_ty=&'{erased} i32 return_ty=() witness={example::{closure#0}}}`, got `{example::{closure#0} upvar_tys=() resume_ty=() yield_ty=&'static i32 return_ty=() witness={example::{closure#0}}}`
|
= note: previous use here
```
This is because we end up redefining the opaque in `check_coroutine_obligations` but with the `yield_ty = &'erased i32` from hir typeck, which causes the *equality* check for opaques to fail.
The coroutine obligtions in question (when `-Znext-solver` is enabled) are:
```
Binder { value: TraitPredicate(<Opaque(DefId(0:5 ~ issue_52304[4c6d]::example::{opaque#0}), []) as std::marker::Sized>, polarity:Positive), bound_vars: [] }
Binder { value: AliasRelate(Term::Ty(Alias(Opaque, AliasTy { args: [], def_id: DefId(0:5 ~ issue_52304[4c6d]::example::{opaque#0}), .. })), Equate, Term::Ty(Coroutine(DefId(0:6 ~ issue_52304[4c6d]::example::{closure#0}), [(), (), &'{erased} i32, (), CoroutineWitness(DefId(0:6 ~ issue_52304[4c6d]::example::{closure#0}), []), ()]))), bound_vars: [] }
Binder { value: AliasRelate(Term::Ty(Coroutine(DefId(0:6 ~ issue_52304[4c6d]::example::{closure#0}), [(), (), &'{erased} i32, (), CoroutineWitness(DefId(0:6 ~ issue_52304[4c6d]::example::{closure#0}), []), ()])), Subtype, Term::Ty(Alias(Opaque, AliasTy { args: [], def_id: DefId(0:5 ~ issue_52304[4c6d]::example::{opaque#0}), .. }))), bound_vars: [] }
```
Ignoring the fact that we end up stalling some really dumb obligations here (lol), I think it makes more sense for us to be using post borrowck analysis for this check anyways.
r? lcnr
inline_threshold mark deprecated
no-stack-check
print deprecation message for -Car too
inline_threshold deprecated and do nothing: make in untracked
make OptionDesc struct from tuple
A few borrowck tweaks to improve 2024 edition migration lints
See first two commits' changes to test outputs. Test coverage in this area is kinda weak, but I think it affects more cases than this (like the craters that will begin to trigger the `tail_expr_drop_order` tests in #134523).
Third commit is a drive-by change that removes a deref hack from `UseSpans` which doesn't really improve diagnostics much.
Mention `unnameable_types` in `unreachable_pub` documentation.
This link makes sense because someone who wishes to avoid unusable `pub` is likely, but not guaranteed, to be interested in avoiding unnameable types.
Also fixed some grammar problems I noticed in the area.
Fixes#116604.
r? Urgau
add m68k-unknown-none-elf target
r? `@workingjubilee`
The existing `m68k-unknown-linux-gnu` target builds `std` by default, requires atomics, and has a base cpu with an fpu. A smaller/more embedded target is desirable both to have a baseline target for the ISA, as well to make debugging easier for working on the llvm backend. Currently this target is using the `M68010` as the minimum CPU due, but as missing features are merged into the `M68k` llvm backend I am hoping to lower this further.
I have been able to build very small crates using a toolchain built against this target (together with a later version of `object`) using the configuration described in the target platform-support documentation, although getting anything of substantial complexity to build quickly hits errors in the llvm backend
This link makes sense because someone who wishes to avoid unusable `pub`
is likely, but not guaranteed, to be interested in avoiding unnameable
types.
Also fixed some grammar problems I noticed in the area.
Fixes#116604.
cg_llvm: Use constants for DWARF opcodes, instead of FFI calls
Split off from #134009 to incorporate feedback from https://github.com/rust-lang/rust/pull/134009#discussion_r1903133906.
Most of the constant values now come from gimli, which is already a compiler dependency.
I noticed that `DW_OP_LLVM_fragment` is an LLVM detail that is not defined by DWARF and could hypothetically change, so I added a static assertion on the C++ side to detect that if it ever happens.
r? workingjubilee
Add a notion of "some ABIs require certain target features"
I think I finally found the right shape for the data and checks that I recently added in https://github.com/rust-lang/rust/pull/133099, https://github.com/rust-lang/rust/pull/133417, https://github.com/rust-lang/rust/pull/134337: we have a notion of "this ABI requires the following list of target features, and it is incompatible with the following list of target features". Both `-Ctarget-feature` and `#[target_feature]` are updated to ensure we follow the rules of the ABI. This removes all the "toggleability" stuff introduced before, though we do keep the notion of a fully "forbidden" target feature -- this is needed to deal with target features that are actual ABI switches, and hence are needed to even compute the list of required target features.
We always explicitly (un)set all required and in-conflict features, just to avoid potential trouble caused by the default features of whatever the base CPU is. We do this *before* applying `-Ctarget-feature` to maintain backward compatibility; this poses a slight risk of missing some implicit feature dependencies in LLVM but has the advantage of not breaking users that deliberately toggle ABI-relevant target features. They get a warning but the feature does get toggled the way they requested.
For now, our logic supports x86, ARM, and RISC-V (just like the previous logic did). Unsurprisingly, RISC-V is the nicest. ;)
As a side-effect this also (unstably) allows *enabling* `x87` when that is harmless. I used the opportunity to mark SSE2 as required on x86-64, to better match the actual logic in LLVM and because all x86-64 chips do have SSE2. This infrastructure also prepares us for requiring SSE on x86-32 when we want to use that for our ABI (and for float semantics sanity), see https://github.com/rust-lang/rust/issues/133611, but no such change is happening in this PR.
r? `@workingjubilee`
Target: Add mips mti baremetal support
Do the same thing as gcc, which use the vendor `mti` to mark the toolchain as MIPS32r2 default.
We support both big endian and little endian flavor:
mips-mti-none-elf
mipsel-mti-none-elf
[Debuginfo] Force enum `DISCR_*` to `static const u64` to allow for inspection via LLDB
see [here](https://rust-lang.zulipchat.com/#narrow/channel/317568-t-compiler.2Fwg-debugging/topic/Revamping.20Debuginfo/near/486614878) for more info.
This change mainly helps `*-msvc` debugged with LLDB. Currently, LLDB cannot inspect `static` struct fields, so the intended visualization for enums is only borderline functional, and niche enums with ranges of discriminant cannot be determined at all .
LLDB *can* inspect `static const` values (though for whatever reason, non-enum/non-u64 consts don't work).
This change adds the `LLVMRustDIBuilderCreateQualifiedType` to the rust FFI layer to wrap the discr type with a `const` modifier, as well as forcing all generated integer enum `DISCR_*` values to be u64's. Those values will only ever be used by debugger visualizers anyway, so it shouldn't be a huge deal, but I left a fixme comment for it just in case.. The `tag` also still properly reflects the discriminant type, so no information is lost.
turn rustc_box into an intrinsic
I am not entirely sure why this was made a special magic attribute, but an intrinsic seems like a more natural way to add magic expressions to the language.
Pass the arch rather than full target name to windows_registry::find_tool
The full target name can be anything with custom target specs. Passing just the arch wasn't possible before cc 1.2, but is now thanks to https://github.com/rust-lang/cc-rs/pull/1285.
try-job: i686-msvc
rustc_intrinsic: support functions without body
We synthesize a HIR body `loop {}` but such bodyless intrinsics.
Most of the diff is due to turning `ItemKind::Fn` into a brace (named-field) enum variant, because it carries a `bool`-typed field now. This is to remember whether the function has a body. MIR building panics to avoid ever translating the fake `loop {}` body, and the intrinsic logic uses the lack of a body to implicitly mark that intrinsic as must-be-overridden.
I first tried actually having no body rather than generating the fake body, but there's a *lot* of code that assumes that all function items have HIR and MIR, so this didn't work very well. Then I noticed that even `rustc_intrinsic_must_be_overridden` intrinsics have MIR generated (they are filled with an `Unreachable` terminator) so I guess I am not the first to discover this. ;)
r? `@oli-obk`
Rollup of 7 pull requests
Successful merges:
- #133964 (core: implement `bool::select_unpredictable`)
- #135001 (Allow using self-contained LLD in bootstrap)
- #135055 (Report impl method has stricter requirements even when RPITIT inference gets in the way)
- #135064 (const-in-pattern: test that the PartialEq impl does not need to be const)
- #135066 (bootstrap: support `./x check run-make-support`)
- #135069 (remove unused function params)
- #135084 (Update carrying_mul_add test to tolerate `nuw`)
r? `@ghost`
`@rustbot` modify labels: rollup
const-in-pattern: test that the PartialEq impl does not need to be const
Fixes https://github.com/rust-lang/rust/issues/119398 by adding a test.
`@compiler-errors` is there some place in the code where we could add a comment saying "as a backcompat hack, here we only require `PartialEq` and not `const PartialEq`"?
r? `@compiler-errors`
Project to `TyKind::Error` when there are unconstrained non-lifetime (ty/const) impl params
It splits the `enforce_impl_params_are_constrained` function into lifetime/non-lifetime, and queryfies the latter. We can then use the result of the latter query (`Result<(), ErrorGuaranteed>`) to intercept projection and constrain the projected type to `TyKind::Error`, which ensures that we leak no ty or const vars to places that don't expect them, like `normalize_erasing_regions`.
The reason we split `enforce_impl_params_are_constrained` into two parts is because we only error for *lifetimes* if the lifetime ends up showing up in any of the associated types of the impl (e.g. we allow `impl<'a> Foo { type Assoc = (); }`). However, in order to compute the `type_of` query for the anonymous associated type of an RPITIT, we need to do trait solving (in `query collect_return_position_impl_trait_in_trait_tys`). That would induce cycles. Luckily, it turns out for lifetimes we don't even care about if they're unconstrained, since they're erased in all contexts that we are trying to fix ICEs. So it's sufficient to keep this check separated out of the query.
I think this is a bit less invasive of an approach compared to #127973. The major difference between this PR and that PR is that we queryify the check instead of merging it into the `explicit_predicates_of` query, and we use the result to taint just projection goals, rather than trait goals too. This doesn't require a lot of new tracking in `ItemCtxt` and `GenericPredicates`, and it also seems to not require any other changes to typeck like that PR did.
Fixes#123141Fixes#125874Fixes#126942Fixes#127804Fixes#130967
r? oli-obk
Improve infer (`_`) suggestions in `const`s and `static`s
Fixes https://github.com/rust-lang/rust/issues/135010.
This PR does a few things to (imo) greatly improve the error message when users write something like `static FOO: [i32; _] = [1, 2, 3]`.
Firstly, it adapts the recovery code for when we encounter `_` in a const/static to work a bit more like `fn foo() -> _`, and removes the somewhat redundant query `diagnostic_only_typeck`.
Secondly, it changes the lowering for `[T; _]` to always lower under the `feature(generic_arg_infer)` logic to `ConstArgKind::Infer`. We still issue the feature error, so it's not doing anything *observable* on the good path, but it does mean that we no longer erroneously interpret `[T; _]`'s array length as a `_` **wildcard expression** (à la destructuring assignment, like `(_, y) = expr`).
Lastly it makes the suggestions verbose and fixes (well, suppresses) a bug with stashing and suggestions.
r? oli-obk
Some type-outlives computation tweaks
Some tweaks that I wrote when investigating https://github.com/rust-lang/rust/issues/135006.
The only commit that's probably interesting here is f3646748cd (the first commit). For some reason it was concerned with filtering out param-env outlives clauses when they matched item-bound outlives clauses. However, if you look at the rest of the control flow for that function, not filtering out those bounds doesn't actually affect the behavior materially.
Pass objcopy args for stripping on OSX
When `-Cstrip` was changed in #131405 to use the bundled rust-objcopy instead of /usr/bin/strip on OSX, strip-like arguments were preserved.
But strip and objcopy are, while being the same binary, different, they have different defaults depending on which binary they are. Notably, strip strips everything by default, and objcopy doesn't strip anything by default.
Additionally, `-S` actually means `--strip-all`, so debuginfo stripped everything and symbols didn't strip anything.
We now correctly pass `--strip-debug` and `--strip-all`.
fixes#135028
try-job: aarch64-apple
try-job: dist-aarch64-apple
Do the same thing as gcc, which use the vendor `mti` to mark
the toolchain as MIPS32r2 default.
We support both big endian and little endian flavor:
mips-mti-none-elf
mipsel-mti-none-elf
taint fcx on selection errors during unsizing
With `feature(dyn_compatible_for_dispatch)` we only check for dyn-compatibility by checking the `T: Unsize<dyn Trait>` predicate during the unsizing coercions checks. If the predicate doesn't hold, we emit an error, but pretend the coercion succeeded to prevent further errors. To prevent const eval from attempting to actually perform this coercion, we need to taint the fcx after reporting the trait errors in the coercion check.
fixes https://github.com/rust-lang/rust/issues/135021
fixes https://github.com/rust-lang/rust/issues/130521