Make const panic!("..") work in Rust 2021.
During const eval, this replaces calls to core::panicking::panic_fmt and std::panicking::being_panic_fmt with a call to a new const fn: core::panicking::const_panic_fmt. That function uses fmt::Arguments::as_str() to get the str and calls panic_str with that instead.
panic!() invocations with formatting arguments are still not accepted, as the creation of such a fmt::Arguments cannot be done in constant functions right now.
r? `@RalfJung`
Stabilize core::task::ready!
_Tracking issue: https://github.com/rust-lang/rust/issues/70922_
This PR stabilizes the `task::ready!` macro. Similar to https://github.com/rust-lang/rust/pull/80886, this PR was waiting on https://github.com/rust-lang/rust/issues/74355 to be fixed.
The `task::ready!` API has existed in the futures ecosystem for several years, and was added on nightly last year in https://github.com/rust-lang/rust/pull/70817. The motivation for this macro is the same as it was back then: virtually every single manual future implementation makes use of this; so much so that it's one of the few things included in the [futures-core](https://docs.rs/futures-core/0.3.12/futures_core) library.
r? ``@tmandry``
cc/ ``@rust-lang/wg-async-foundations`` ``@rust-lang/libs``
## Example
```rust
use core::task::{Context, Poll};
use core::future::Future;
use core::pin::Pin;
async fn get_num() -> usize {
42
}
pub fn do_poll(cx: &mut Context<'_>) -> Poll<()> {
let mut f = get_num();
let f = unsafe { Pin::new_unchecked(&mut f) };
let num = ready!(f.poll(cx));
// ... use num
Poll::Ready(())
}
```
Add Integer::log variants
_This is another attempt at landing https://github.com/rust-lang/rust/pull/70835, which was approved by the libs team but failed on Android tests through Bors. The text copied here is from the original issue. The only change made so far is the addition of non-`checked_` variants of the log methods._
_Tracking issue: #70887_
---
This implements `{log,log2,log10}` methods for all integer types. The implementation was provided by `@substack` for use in the stdlib.
_Note: I'm not big on math, so this PR is a best effort written with limited knowledge. It's likely I'll be getting things wrong, but happy to learn and correct. Please bare with me._
## Motivation
Calculating the logarithm of a number is a generally useful operation. Currently the stdlib only provides implementations for floats, which means that if we want to calculate the logarithm for an integer we have to cast it to a float and then back to an int.
> would be nice if there was an integer log2 instead of having to either use the f32 version or leading_zeros() which i have to verify the results of every time to be sure
_— [`@substack,` 2020-03-08](https://twitter.com/substack/status/1236445105197727744)_
At higher numbers converting from an integer to a float we also risk overflows. This means that Rust currently only provides log operations for a limited set of integers.
The process of doing log operations by converting between floats and integers is also prone to rounding errors. In the following example we're trying to calculate `base10` for an integer. We might try and calculate the `base2` for the values, and attempt [a base swap](https://www.rapidtables.com/math/algebra/Logarithm.html#log-rules) to arrive at `base10`. However because we're performing intermediate rounding we arrive at the wrong result:
```rust
// log10(900) = ~2.95 = 2
dbg!(900f32.log10() as u64);
// log base change rule: logb(x) = logc(x) / logc(b)
// log2(900) / log2(10) = 9/3 = 3
dbg!((900f32.log2() as u64) / (10f32.log2() as u64));
```
_[playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=6bd6c68b3539e400f9ca4fdc6fc2eed0)_
This is somewhat nuanced as a lot of the time it'll work well, but in real world code this could lead to some hard to track bugs. By providing correct log implementations directly on integers we can help prevent errors around this.
## Implementation notes
I checked whether LLVM intrinsics existed before implementing this, and none exist yet. ~~Also I couldn't really find a better way to write the `ilog` function. One option would be to make it a private method on the number, but I didn't see any precedent for that. I also didn't know where to best place the tests, so I added them to the bottom of the file. Even though they might seem like quite a lot they take no time to execute.~~
## References
- [Log rules](https://www.rapidtables.com/math/algebra/Logarithm.html#log-rules)
- [Rounding error playground](https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=6bd6c68b3539e400f9ca4fdc6fc2eed0)
- [substack's tweet asking about integer log2 in the stdlib](https://twitter.com/substack/status/1236445105197727744)
- [Integer Logarithm, A. Jaffer 2008](https://people.csail.mit.edu/jaffer/III/ilog.pdf)
Change entry point to 🛡️ against 💥💥-payloads
Guard against panic payloads panicking within entrypoints, where it is
UB to do so.
Note that there are a number of tradeoffs to consider. For instance, I
considered guarding against accidental panics inside the `rt::init` and
`rt::cleanup` code as well, as it is not all that obvious these may not
panic, but doing so would mean that we initialize certain thread-local
slots unconditionally, which has its own problems.
Fixes#86030
r? `@m-ou-se`
Guard against panic payloads panicking within entrypoints, where it is
UB to do so.
Note that there are a number of implementation approaches to consider.
Some simpler, some more complicated. This particular solution is nice in
that it also guards against accidental implementation issues in
various pieces of runtime code, something we cannot prevent statically
right now.
Fixes#86030
Linear interpolation
#71016 is a previous attempt at implementation that was closed by the author. I decided to reuse the feature request issue (#71015) as a tracking issue. A member of the rust-lang org will have to edit the original post to be formatted correctly as I am not the issue's original author.
The common name `lerp` is used because it is the term used by most code in a wide variety of contexts; it also happens to be the recently chosen name of the function that was added to C++20.
To ensure symmetry as a method, this breaks the usual ordering of the method from `lerp(a, b, t)` to `t.lerp(a, b)`. This makes the most sense to me personally, and there will definitely be discussion before stabilisation anyway.
Implementing lerp "correctly" is very dififcult even though it's a very common building-block used in all sorts of applications. A good prior reading is [this proposal](http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0811r2.html#linear-interpolation) for the C++20 lerp which talks about the various guarantees, which I've simplified down to:
1. Exactness: `(0.0).lerp(start, end) == start` and `(1.0).lerp(start, end) == end`
2. Consistency: `anything.lerp(x, x) == x`
3. Monotonicity: once you go up don't go down
Fun story: the version provided in that proposal, from what I understand, isn't actually monotonic.
I messed around with a *lot* of different lerp implementations because I kind of got a bit obsessed and I ultimately landed on one that uses the fused `mul_add` instruction. Floating-point lerp lore is hard to come by, so, just trust me when I say that this ticks all the boxes. I'm only 90% certain that it's monotonic, but I'm sure that people who care deeply about this will be there to discuss before stabilisation.
The main reason for using `mul_add` is that, in general, it ticks more boxes with fewer branches to be "correct." Although it will be slower on architectures without the fused `mul_add`, that's becoming more and more rare and I have a feeling that most people who will find themselves needing `lerp` will also have an efficient `mul_add` instruction available.
Stabilize {std, core}::prelude::rust_*.
This stabilizes the `{core, std}::prelude::{rust_2015, rust_2018, rust_2021}` modules.
The usage of these modules as the prelude in those editions was already stabilized. This just stabilizes the modules themselves, making it possible for a user to explicitly refer to them.
Tracking issue: https://github.com/rust-lang/rust/issues/85684
FCP on the RFC that included this finished here: https://github.com/rust-lang/rfcs/pull/3114#issuecomment-840577395
Add functions `Duration::try_from_secs_{f32, f64}`
These functions allow constructing a Duration from a floating point value that could be out of range without panicking.
Tracking issue: #83400
## User-facing changes
- Intra-doc links to primitives that currently go to rust-lang.org/nightly/std/primitive.x.html will start going to channel that rustdoc was built with. Nightly will continue going to /nightly; Beta will link to /beta; stable compilers will link to /1.52.1 (or whatever version they were built as).
- Cross-crate links from std to core currently go to /nightly unconditionally. They will start going to /1.52.0 on stable channels (but remain the same on nightly channels).
- Intra-crate links from std to std (or core to core) currently go to the same URL they are hosted at; they will continue to do so. Notably, this is different from everything else because it can preserve the distinction between /stable and /1.52.0 by using relative links.
Note that "links" includes both intra-doc links and rustdoc's own
automatically generated hyperlinks.
## Implementation changes
- Update the testsuite to allow linking to /beta and /1.52.1 in docs
- Use an html_root_url for the standard library that's dependent on the channel
This avoids linking to nightly docs on stable.
- Update rustdoc to use channel-dependent links for primitives from an
unknown crate
- Set DOC_RUST_LANG_ORG_CHANNEL from bootstrap to ensure it's in sync
- Include doc.rust-lang.org in the channel
Move `std::memchr` to `sys_common`
`std::memchr` is a thin abstraction over the different `memchr` implementations in `sys`, along with documentation and tests. The module is only used internally by `std`, nothing is exported externally. Code like this is exactly what the `sys_common` module is for, so this PR moves it there.
# Stabilization report
## Summary
This stabilizes using macro expansion in key-value attributes, like so:
```rust
#[doc = include_str!("my_doc.md")]
struct S;
#[path = concat!(env!("OUT_DIR"), "/generated.rs")]
mod m;
```
See the changes to the reference for details on what macros are allowed;
see Petrochenkov's excellent blog post [on internals](https://internals.rust-lang.org/t/macro-expansion-points-in-attributes/11455)
for alternatives that were considered and rejected ("why accept no more
and no less?")
This has been available on nightly since 1.50 with no major issues.
## Notes
### Accepted syntax
The parser accepts arbitrary Rust expressions in this position, but any expression other than a macro invocation will ultimately lead to an error because it is not expected by the built-in expression forms (e.g., `#[doc]`). Note that decorators and the like may be able to observe other expression forms.
### Expansion ordering
Expansion of macro expressions in "inert" attributes occurs after decorators have executed, analogously to macro expressions appearing in the function body or other parts of decorator input.
There is currently no way for decorators to accept macros in key-value position if macro expansion must be performed before the decorator executes (if the macro can simply be copied into the output for later expansion, that can work).
## Test cases
- https://github.com/rust-lang/rust/blob/master/src/test/ui/attributes/key-value-expansion-on-mac.rs
- https://github.com/rust-lang/rust/blob/master/src/test/rustdoc/external-doc.rs
The feature has also been dogfooded extensively in the compiler and
standard library:
- https://github.com/rust-lang/rust/pull/83329
- https://github.com/rust-lang/rust/pull/83230
- https://github.com/rust-lang/rust/pull/82641
- https://github.com/rust-lang/rust/pull/80534
## Implementation history
- Initial proposal: https://github.com/rust-lang/rust/issues/55414#issuecomment-554005412
- Experiment to see how much code it would break: https://github.com/rust-lang/rust/pull/67121
- Preliminary work to restrict expansion that would conflict with this
feature: https://github.com/rust-lang/rust/pull/77271
- Initial implementation: https://github.com/rust-lang/rust/pull/78837
- Fix for an ICE: https://github.com/rust-lang/rust/pull/80563
## Unresolved Questions
~~https://github.com/rust-lang/rust/pull/83366#issuecomment-805180738 listed some concerns, but they have been resolved as of this final report.~~
## Additional Information
There are two workarounds that have a similar effect for `#[doc]`
attributes on nightly. One is to emulate this behavior by using a limited version of this feature that was stabilized for historical reasons:
```rust
macro_rules! forward_inner_docs {
($e:expr => $i:item) => {
#[doc = $e]
$i
};
}
forward_inner_docs!(include_str!("lib.rs") => struct S {});
```
This also works for other attributes (like `#[path = concat!(...)]`).
The other is to use `doc(include)`:
```rust
#![feature(external_doc)]
#[doc(include = "lib.rs")]
struct S {}
```
The first works, but is non-trivial for people to discover, and
difficult to read and maintain. The second is a strange special-case for
a particular use of the macro. This generalizes it to work for any use
case, not just including files.
I plan to remove `doc(include)` when this is stabilized. The
`forward_inner_docs` workaround will still compile without warnings, but
I expect it to be used less once it's no longer necessary.
Deprecate the core::raw / std::raw module
It only contains the `TraitObject` struct which exposes components of wide pointer. Pointer metadata APIs are designed to replace this: https://github.com/rust-lang/rust/issues/81513
This commit adds a variant of the `thread_local!` macro as a new
`thread_local_const_init!` macro which requires that the initialization
expression is constant (e.g. could be stuck into a `const` if so
desired). This form of thread local allows for a more efficient
implementation of `LocalKey::with` both if the value has a destructor
and if it doesn't. If the value doesn't have a destructor then `with`
should desugar to exactly as-if you use `#[thread_local]` given
sufficient inlining.
The purpose of this new form of thread locals is to precisely be
equivalent to `#[thread_local]` on platforms where possible for values
which fit the bill (those without destructors). This should help close
the gap in performance between `thread_local!`, which is safe, relative
to `#[thread_local]`, which is not easy to use in a portable fashion.
Update stdarch submodule (to before it switched to const generics)
https://github.com/rust-lang/rust/pull/83278#issuecomment-812389823: This unblocks #82539.
Major changes:
- More AVX-512 intrinsics.
- More ARM & AArch64 NEON intrinsics.
- Updated unstable WASM intrinsics to latest draft standards.
- std_detect is now a separate crate instead of a submodule of std.
I double-checked and the first use of const generics looks like 8d5017861e, which isn't included in this PR.
r? `@Amanieu`
This also includes a cherry-pick of
ec1461905b
and https://github.com/rust-lang/stdarch/pull/1108 to fix a build
failure.
It also adds a re-export of various macros to the crate root of libstd -
previously they would show up automatically because std_detect was defined
in the same crate.
Rename `#[doc(spotlight)]` to `#[doc(notable_trait)]`
Fixes#80936.
"spotlight" is not a very specific or self-explaining name.
Additionally, the dialog that it triggers is called "Notable traits".
So, "notable trait" is a better name.
* Rename `#[doc(spotlight)]` to `#[doc(notable_trait)]`
* Rename `#![feature(doc_spotlight)]` to `#![feature(doc_notable_trait)]`
* Update documentation
* Improve documentation
r? `@Manishearth`
"spotlight" is not a very specific or self-explaining name.
Additionally, the dialog that it triggers is called "Notable traits".
So, "notable trait" is a better name.
* Rename `#[doc(spotlight)]` to `#[doc(notable_trait)]`
* Rename `#![feature(doc_spotlight)]` to `#![feature(doc_notable_trait)]`
* Update documentation
* Improve documentation
Edition-specific preludes
This changes `{std,core}::prelude` to export edition-specific preludes under `rust_2015`, `rust_2018` and `rust_2021`. (As suggested in https://github.com/rust-lang/rust/issues/51418#issuecomment-395630382.) For now they all just re-export `v1::*`, but this allows us to add things to the 2021edition prelude soon.
This also changes the compiler to make the automatically injected prelude import dependent on the selected edition.
cc `@rust-lang/libs` `@djc`