Proper Unix terminology is "exit status" (vs "wait status"). "exit
code" is imprecise on Unix and therefore unclear. (As far as I can
tell, "exit code" is correct terminology on Windows.)
This new wording is unfortunately inconsistent with the identifier
names in the Rust stdlib.
It is the identifier names that are wrong, as discussed at length in eg
https://doc.rust-lang.org/nightly/std/process/struct.ExitStatus.htmlhttps://doc.rust-lang.org/nightly/std/os/unix/process/trait.ExitStatusExt.html
Unfortunately for API stability reasons it would be a lot of work, and
a lot of disruption, to change the names in the stdlib (eg to rename
`std::process::ExitStatus` to `std::process::ChildStatus` or
something), but we should fix the message output. Many (probably
most) readers of these messages about exit statuses will be users and
system administrators, not programmers, who won't even know that Rust
has this wrong terminology.
So I think the right thing is to fix the documentation (as I have
already done) and, now, the terminology in the implementation.
This is a user-visible change to the behaviour of all Rust programs
which run Unix subprocesses. Hopefully no-one is matching against the
exit status string, except perhaps in tests.
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
Do not attempt to unlock envlock in child process after a fork.
This implements the first two points from https://github.com/rust-lang/rust/issues/64718#issuecomment-793030479
This is a breaking change for cases where the environment is accessed in a Command::pre_exec closure. Except for single-threaded programs these uses were not correct anyway since they aren't async-signal safe.
Note that we had a ui test that explicitly tried `env::set_var` in `pre_exec`. As expected it failed with these changes when I tested locally.
Fixes to ExitStatus and its docs
* On Unix, properly display every possible wait status (and don't panic on weird values)
* In the documentation, be clear and consistent about "exit status" vs "wait status".
This is a breaking change for cases where the environment is
accessed in a Command::pre_exec closure. Except for
single-threaded programs these uses were not correct
anyway since they aren't async-signal safe.
Currently, on Nightly, this panics:
```
use std::process::ExitStatus;
use std::os::unix::process::ExitStatusExt;
fn main() {
let st = ExitStatus::from_raw(0x007f);
println!("st = {}", st);
}
```
This is because the impl of Display assumes that if .code() is None,
.signal() must be Some. That was a false assumption, although it was
true with buggy code before
5b1316f781
unix ExitStatus: Do not treat WIFSTOPPED as WIFSIGNALED
This is not likely to have affected many people in practice, because
`Command` will never produce such a wait status (`ExitStatus`).
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
A unix wait status can contain, at least, exit statuses, termination
signals, and stop signals.
WTERMSIG is only valid if WIFSIGNALED.
https://pubs.opengroup.org/onlinepubs/9699919799/functions/wait.html
It will not be easy to experience this bug with `Command`, because
that doesn't pass WUNTRACED. But you could make an ExitStatus
containing, say, a WIFSTOPPED, from a call to one of the libc wait
functions.
(In the WIFSTOPPED case, there is WSTOPSIG. But a stop signal is
encoded differently to a termination signal, so WTERMSIG and WSTOPSIG
are by no means the same.)
Signed-off-by: Ian Jackson <ijackson@chiark.greenend.org.uk>
If pthread mutex initialization fails, the failure will go unnoticed unless
debug assertions are enabled. Any subsequent use of mutex will also silently
fail, since return values from lock & unlock operations are similarly checked
only through debug assertions.
In some implementations the mutex initialization requires a memory
allocation and so it does fail in practice.
Check that initialization succeeds to ensure that mutex guarantees
mutual exclusion.
Use posix_spawn() on unix if program is a path
Previously `Command::spawn` would fall back to the non-posix_spawn based
implementation if the `PATH` environment variable was possibly changed.
On systems with a modern (g)libc `posix_spawn()` can be significantly
faster. If program is a path itself the `PATH` environment variable is
not used for the lookup and it should be safe to use the
`posix_spawnp()` method. [1]
We found this, because we have a cli application that effectively runs a
lot of subprocesses. It would sometimes noticeably hang while printing
output. Profiling showed that the process was spending the majority of
time in the kernel's `copy_page_range` function while spawning
subprocesses. During this time the process is completely blocked from
running, explaining why users were reporting the cli app hanging.
Through this we discovered that `std::process::Command` has a fast and
slow path for process execution. The fast path is backed by
`posix_spawnp()` and the slow path by fork/exec syscalls being called
explicitly. Using fork for process creation is supposed to be fast, but
it slows down as your process uses more memory. It's not because the
kernel copies the actual memory from the parent, but it does need to
copy the references to it (see `copy_page_range` above!). We ended up
using the slow path, because the command spawn implementation in falls
back to the slow path if it suspects the PATH environment variable was
changed.
Here is a smallish program demonstrating the slowdown before this code
change:
```
use std::process::Command;
use std::time::Instant;
fn main() {
let mut args = std::env::args().skip(1);
if let Some(size) = args.next() {
// Allocate some memory
let _xs: Vec<_> = std::iter::repeat(0)
.take(size.parse().expect("valid number"))
.collect();
let mut command = Command::new("/bin/sh");
command
.arg("-c")
.arg("echo hello");
if args.next().is_some() {
println!("Overriding PATH");
command.env("PATH", std::env::var("PATH").expect("PATH env var"));
}
let now = Instant::now();
let child = command
.spawn()
.expect("failed to execute process");
println!("Spawn took: {:?}", now.elapsed());
let output = child.wait_with_output().expect("failed to wait on process");
println!("Output: {:?}", output);
} else {
eprintln!("Usage: prog [size]");
std::process::exit(1);
}
()
}
```
Running it and passing different amounts of elements to use to allocate
memory shows that the time taken for `spawn()` can differ quite
significantly. In latter case the `posix_spawnp()` implementation is 30x
faster:
```
$ cargo run --release 10000000
...
Spawn took: 324.275µs
hello
$ cargo run --release 10000000 changepath
...
Overriding PATH
Spawn took: 2.346809ms
hello
$ cargo run --release 100000000
...
Spawn took: 387.842µs
hello
$ cargo run --release 100000000 changepath
...
Overriding PATH
Spawn took: 13.434677ms
hello
```
[1]: 5f72f9800b/posix/execvpe.c (L81)
The posix_spawnattr_init & posix_spawn_file_actions_init might fail,
but their return code is not checked.
Check for non-zero return code and destroy only succesfully initialized
objects.
The cvt function compares the argument with -1 and when equal returns a new
io::Error constructed from errno. It is used together posix_spawn_* functions.
This is incorrect. Those functions do not set errno. Instead they return
non-zero error code directly.
Check for non-zero return code and use it to construct a new io::Error.
Use posix_spawn on musl targets
The posix_spawn had been available in a form suitable for use in a
Command implementation since musl 0.9.12. Use it in a preference to a
fork when possible, to benefit from CLONE_VM|CLONE_VFORK used there.
Previously `Command::spawn` would fall back to the non-posix_spawn based
implementation if the `PATH` environment variable was possibly changed.
On systems with a modern (g)libc `posix_spawn()` can be significantly
faster. If program is a path itself the `PATH` environment variable is
not used for the lookup and it should be safe to use the
`posix_spawnp()` method. [1]
We found this, because we have a cli application that effectively runs a
lot of subprocesses. It would sometimes noticeably hang while printing
output. Profiling showed that the process was spending the majority of
time in the kernel's `copy_page_range` function while spawning
subprocesses. During this time the process is completely blocked from
running, explaining why users were reporting the cli app hanging.
Through this we discovered that `std::process::Command` has a fast and
slow path for process execution. The fast path is backed by
`posix_spawnp()` and the slow path by fork/exec syscalls being called
explicitly. Using fork for process creation is supposed to be fast, but
it slows down as your process uses more memory. It's not because the
kernel copies the actual memory from the parent, but it does need to
copy the references to it (see `copy_page_range` above!). We ended up
using the slow path, because the command spawn implementation in falls
back to the slow path if it suspects the PATH environment variable was
changed.
Here is a smallish program demonstrating the slowdown before this code
change:
```
use std::process::Command;
use std::time::Instant;
fn main() {
let mut args = std::env::args().skip(1);
if let Some(size) = args.next() {
// Allocate some memory
let _xs: Vec<_> = std::iter::repeat(0)
.take(size.parse().expect("valid number"))
.collect();
let mut command = Command::new("/bin/sh");
command
.arg("-c")
.arg("echo hello");
if args.next().is_some() {
println!("Overriding PATH");
command.env("PATH", std::env::var("PATH").expect("PATH env var"));
}
let now = Instant::now();
let child = command
.spawn()
.expect("failed to execute process");
println!("Spawn took: {:?}", now.elapsed());
let output = child.wait_with_output().expect("failed to wait on process");
println!("Output: {:?}", output);
} else {
eprintln!("Usage: prog [size]");
std::process::exit(1);
}
()
}
```
Running it and passing different amounts of elements to use to allocate
memory shows that the time taken for `spawn()` can differ quite
significantly. In latter case the `posix_spawnp()` implementation is 30x
faster:
```
$ cargo run --release 10000000
...
Spawn took: 324.275µs
hello
$ cargo run --release 10000000 changepath
...
Overriding PATH
Spawn took: 2.346809ms
hello
$ cargo run --release 100000000
...
Spawn took: 387.842µs
hello
$ cargo run --release 100000000 changepath
...
Overriding PATH
Spawn took: 13.434677ms
hello
```
[1]: 5f72f9800b/posix/execvpe.c (L81)
Add accessors to Command.
This adds some accessor methods to `Command` to provide a way to access the values set when building the `Command`. An example where this can be useful is to display the command to be executed. This is roughly based on the [`ProcessBuilder`](13b73cdaf7/src/cargo/util/process_builder.rs (L105-L134)) in Cargo.
Possible concerns about the API:
- Values with NULs on Unix will be returned as `"<string-with-nul>"`. I don't think it is practical to avoid this, since otherwise a whole separate copy of all the values would need to be kept in `Command`.
- Does not handle `arg0` on Unix. This can be awkward to support in `get_args` and is rarely used. I figure if someone really wants it, it can be added to `CommandExt` as a separate method.
- Does not offer a way to detect `env_clear`. I'm uncertain if it would be useful for anyone.
- Does not offer a way to get an environment variable by name (`get_env`). I figure this can be added later if anyone really wants it. I think the motivation for this is weak, though. Also, the API could be a little awkward (return a `Option<Option<&OsStr>>`?).
- `get_envs` could skip "cleared" entries and just return `&OsStr` values instead of `Option<&OsStr>`. I'm on the fence here. My use case is to display a shell command, and I only intend it to be roughly equivalent to the actual execution, and I probably won't display `None` entries. I erred on the side of providing extra information, but I suspect many situations will just filter out the `None`s.
- Could implement more iterator stuff (like `DoubleEndedIterator`).
I have not implemented new std items before, so I'm uncertain if the existing issue should be reused, or if a new tracking issue is needed.
cc #44434
The posix_spawn had been available in a form suitable for use in a
Command implementation since musl 0.9.12. Use it in a preference to a
fork when possible, to benefit from CLONE_VM|CLONE_VFORK used there.