Don't generate functions with the `rustc_intrinsic_must_be_overridden` attribute
Functions with the attribute `rustc_intrinsic_must_be_overridden` never be called.
r? compiler
Stabilize opaque type precise capturing (RFC 3617)
This PR partially stabilizes opaque type *precise capturing*, which was specified in [RFC 3617](https://github.com/rust-lang/rfcs/pull/3617), and whose syntax was amended by FCP in [#125836](https://github.com/rust-lang/rust/issues/125836).
This feature, as stabilized here, gives us a way to explicitly specify the generic lifetime parameters that an RPIT-like opaque type captures. This solves the problem of overcapturing, for lifetime parameters in these opaque types, and will allow the Lifetime Capture Rules 2024 ([RFC 3498](https://github.com/rust-lang/rfcs/pull/3498)) to be fully stabilized for RPIT in Rust 2024.
### What are we stabilizing?
This PR stabilizes the use of a `use<'a, T>` bound in return-position impl Trait opaque types. Such a bound fully specifies the set of generic parameters captured by the RPIT opaque type, entirely overriding the implicit default behavior. E.g.:
```rust
fn does_not_capture<'a, 'b>() -> impl Sized + use<'a> {}
// ~~~~~~~~~~~~~~~~~~~~
// This RPIT opaque type does not capture `'b`.
```
The way we would suggest thinking of `impl Trait` types *without* an explicit `use<..>` bound is that the `use<..>` bound has been *elided*, and that the bound is filled in automatically by the compiler according to the edition-specific capture rules.
All non-`'static` lifetime parameters, named (i.e. non-APIT) type parameters, and const parameters in scope are valid to name, including an elided lifetime if such a lifetime would also be valid in an outlives bound, e.g.:
```rust
fn elided(x: &u8) -> impl Sized + use<'_> { x }
```
Lifetimes must be listed before type and const parameters, but otherwise the ordering is not relevant to the `use<..>` bound. Captured parameters may not be duplicated. For now, only one `use<..>` bound may appear in a bounds list. It may appear anywhere within the bounds list.
### How does this differ from the RFC?
This stabilization differs from the RFC in one respect: the RFC originally specified `use<'a, T>` as syntactically part of the RPIT type itself, e.g.:
```rust
fn capture<'a>() -> impl use<'a> Sized {}
```
However, settling on the final syntax was left as an open question. T-lang later decided via FCP in [#125836](https://github.com/rust-lang/rust/issues/125836) to treat `use<..>` as a syntactic bound instead, e.g.:
```rust
fn capture<'a>() -> impl Sized + use<'a> {}
```
### What aren't we stabilizing?
The key goal of this PR is to stabilize the parts of *precise capturing* that are needed to enable the migration to Rust 2024.
There are some capabilities of *precise capturing* that the RFC specifies but that we're not stabilizing here, as these require further work on the type system. We hope to lift these limitations later.
The limitations that are part of this PR were specified in the [RFC's stabilization strategy](https://rust-lang.github.io/rfcs/3617-precise-capturing.html#stabilization-strategy).
#### Not capturing type or const parameters
The RFC addresses the overcapturing of type and const parameters; that is, it allows for them to not be captured in opaque types. We're not stabilizing that in this PR. Since all in scope generic type and const parameters are implicitly captured in all editions, this is not needed for the migration to Rust 2024.
For now, when using `use<..>`, all in scope type and const parameters must be nameable (i.e., APIT cannot be used) and included as arguments. For example, this is an error because `T` is in scope and not included as an argument:
```rust
fn test<T>() -> impl Sized + use<> {}
//~^ ERROR `impl Trait` must mention all type parameters in scope in `use<...>`
```
This is due to certain current limitations in the type system related to how generic parameters are represented as captured (i.e. bivariance) and how inference operates.
We hope to relax this in the future, and this stabilization is forward compatible with doing so.
#### Precise capturing for return-position impl Trait **in trait** (RPITIT)
The RFC specifies precise capturing for RPITIT. We're not stabilizing that in this PR. Since RPITIT already adheres to the Lifetime Capture Rules 2024, this isn't needed for the migration to Rust 2024.
The effect of this is that the anonymous associated types created by RPITITs must continue to capture all of the lifetime parameters in scope, e.g.:
```rust
trait Foo<'a> {
fn test() -> impl Sized + use<Self>;
//~^ ERROR `use<...>` precise capturing syntax is currently not allowed in return-position `impl Trait` in traits
}
```
To allow this involves a meaningful amount of type system work related to adding variance to GATs or reworking how generics are represented in RPITITs. We plan to do this work separately from the stabilization. See:
- https://github.com/rust-lang/rust/pull/124029
Supporting precise capturing for RPITIT will also require us to implement a new algorithm for detecting refining capture behavior. This may involve looking through type parameters to detect cases where the impl Trait type in an implementation captures fewer lifetimes than the corresponding RPITIT in the trait definition, e.g.:
```rust
trait Foo {
fn rpit() -> impl Sized + use<Self>;
}
impl<'a> Foo for &'a () {
// This is "refining" due to not capturing `'a` which
// is implied by the trait's `use<Self>`.
fn rpit() -> impl Sized + use<>;
// This is not "refining".
fn rpit() -> impl Sized + use<'a>;
}
```
This stabilization is forward compatible with adding support for this later.
### The technical details
This bound is purely syntactical and does not lower to a [`Clause`](https://doc.rust-lang.org/1.79.0/nightly-rustc/rustc_middle/ty/type.ClauseKind.html) in the type system. For the purposes of the type system (and for the types team's curiosity regarding this stabilization), we have no current need to represent this as a `ClauseKind`.
Since opaques already capture a variable set of lifetimes depending on edition and their syntactical position (e.g. RPIT vs RPITIT), a `use<..>` bound is just a way to explicitly rather than implicitly specify that set of lifetimes, and this only affects opaque type lowering from AST to HIR.
### FCP plan
While there's much discussion of the type system here, the feature in this PR is implemented internally as a transformation that happens before lowering to the type system layer. We already support impl Trait types partially capturing the in scope lifetimes; we just currently only expose that implicitly.
So, in my (errs's) view as a types team member, there's nothing for types to weigh in on here with respect to the implementation being stabilized, and I'd suggest a lang-only proposed FCP (though we'll of course CC the team below).
### Authorship and acknowledgments
This stabilization report was coauthored by compiler-errors and TC.
TC would like to acknowledge the outstanding and speedy work that compiler-errors has done to make this feature happen.
compiler-errors thanks TC for authoring the RFC, for all of his involvement in this feature's development, and pushing the Rust 2024 edition forward.
### Open items
We're doing some things in parallel here. In signaling the intention to stabilize, we want to uncover any latent issues so we can be sure they get addressed. We want to give the maximum time for discussion here to happen by starting it while other remaining miscellaneous work proceeds. That work includes:
- [x] Look into `syn` support.
- https://github.com/dtolnay/syn/issues/1677
- https://github.com/dtolnay/syn/pull/1707
- [x] Look into `rustfmt` support.
- https://github.com/rust-lang/rust/pull/126754
- [x] Look into `rust-analyzer` support.
- https://github.com/rust-lang/rust-analyzer/issues/17598
- https://github.com/rust-lang/rust-analyzer/pull/17676
- [x] Look into `rustdoc` support.
- https://github.com/rust-lang/rust/issues/127228
- https://github.com/rust-lang/rust/pull/127632
- https://github.com/rust-lang/rust/pull/127658
- [x] Suggest this feature to RfL (a known nightly user).
- [x] Add a chapter to the edition guide.
- https://github.com/rust-lang/edition-guide/pull/316
- [x] Update the Reference.
- https://github.com/rust-lang/reference/pull/1577
### (Selected) implementation history
* https://github.com/rust-lang/rfcs/pull/3498
* https://github.com/rust-lang/rfcs/pull/3617
* https://github.com/rust-lang/rust/pull/123468
* https://github.com/rust-lang/rust/issues/125836
* https://github.com/rust-lang/rust/pull/126049
* https://github.com/rust-lang/rust/pull/126753Closes#123432.
cc `@rust-lang/lang` `@rust-lang/types`
`@rustbot` labels +T-lang +I-lang-nominated +A-impl-trait +F-precise_capturing
Tracking:
- https://github.com/rust-lang/rust/issues/123432
----
For the compiler reviewer, I'll leave some inline comments about diagnostics fallout :^)
r? compiler
Added "copy" to Debug fmt for copy operands
In MIR's debug mode (--emit mir) the printing for Operands is slightly inconsistent.
The RValues - values on the right side of an Assign - are usually printed with their Operand when they are Places.
Example:
_2 = move _3
But for arguments, the operand is omitted.
_2 = _1
I propose a change be made, to display the place with the operand.
_2 = copy _1
Move and copy have different semantics, meaning this difference is important and helpful to the user. It also adds consistency to the pretty printing.
-- EDIT --
Consider this example Rust program and its MIR output with the **updated pretty printer.**
This was generated with the arguments --emit mir --crate-type lib -Zmir-opt-level=0 (Otherwise, it's optimised away since it's a junk program).
```rust
fn main(foo: i32) {
let v = 10;
if v == 20 {
foo;
}
else {
v;
}
}
```
```MIR
// WARNING: This output format is intended for human consumers only
// and is subject to change without notice. Knock yourself out.
fn main(_1: i32) -> () {
debug foo => _1;
let mut _0: ();
let _2: i32;
let mut _3: bool;
let mut _4: i32;
let _5: i32;
let _6: i32;
scope 1 {
debug v => _2;
}
bb0: {
StorageLive(_2);
_2 = const 10_i32;
StorageLive(_3);
StorageLive(_4);
_4 = copy _2;
_3 = Eq(move _4, const 20_i32);
switchInt(move _3) -> [0: bb2, otherwise: bb1];
}
bb1: {
StorageDead(_4);
StorageLive(_5);
_5 = copy _1;
StorageDead(_5);
_0 = const ();
goto -> bb3;
}
bb2: {
StorageDead(_4);
StorageLive(_6);
_6 = copy _2;
StorageDead(_6);
_0 = const ();
goto -> bb3;
}
bb3: {
StorageDead(_3);
StorageDead(_2);
return;
}
}
```
In this example program, we can see that when we move a place, it is preceded by "move". e.g. ``` _3 = Eq(move _4, const 20_i32);```. However, when we copy a place such as ```_5 = _1;```, it is not preceded by the operand in the original printout. I propose to change the print to include the copy ```_5 = copy _1``` as in this example.
Regarding the arguments part. When I originally submitted this PR, I was under the impression this only affected the print for arguments to a function, but actually, it affects anything that uses a copy. This is preferable anyway with regard to consistency. The PR is about making ```copy``` explicit.
Prevent double panic in query system, improve diagnostics
I stumbled upon a double-panic in the query system while working on something else (#129102), which hid the real error cause for what I was debugging. This PR remedies that, so unwinding should be able to present more errors. It shouldn't really be relevant for code that doesn't ICE.
safe transmute: check lifetimes
Modifies `BikeshedIntrinsicFrom` to forbid lifetime extensions on references. This static check can be opted out of with the `Assume::lifetimes` flag.
Fixes#129097
Tracking Issue: https://github.com/rust-lang/rust/issues/99571
r? `@compiler-errors`
Switch to using the v2 resolver in most workspaces
Pinning the resolver to v1 was done in 5abff3753a ("Explicit set workspace.resolver ...") in order to suppress warnings. Since there is no specific reason not to use the new resolver and since it fixes issues, change to `resolver = "2"` everywhere except library.
Fix order of normalization and recursion in const folding.
Fixes#126831.
Without this patch, type normalization is not always idempotent, which leads to all sorts of bugs in places that assume that normalizing a normalized type does nothing.
Tracking issue: https://github.com/rust-lang/rust/issues/95174
r? BoxyUwU
When deduplicating unreachable blocks, erase the source information.
After deduplication the block conceptually belongs to multiple locations in the source. Although these blocks are unreachable, in #123341 we did come across a real side effect, an unreachable block that survives into the compiled code can cause a debugger to set a breakpoint on the wrong instruction. Erasing the source information ensures that a debugger will never be misled into thinking that the unreachable block is worth setting a breakpoint on, especially after #128627.
Technically we don't need to erase the source information if all the deduplicated blocks have identical source information, but tracking that seems like more effort than it's worth.
I'll let njn redirect this one too. r? `@nnethercote`
Suggest adding Result return type for associated method in E0277.
Recommit #126515 because I messed up during rebase,
Suggest adding Result return type for associated method in E0277.
For following:
```rust
struct A;
impl A {
fn test4(&self) {
let mut _file = File::create("foo.txt")?;
//~^ ERROR the `?` operator can only be used in a method
}
```
Suggest:
```rust
impl A {
fn test4(&self) -> Result<(), Box<dyn std::error::Error>> {
let mut _file = File::create("foo.txt")?;
//~^ ERROR the `?` operator can only be used in a method
Ok(())
}
}
```
For #125997
r? `@cjgillot`
Stabilize `raw_ref_op` (RFC 2582)
This stabilizes the syntax `&raw const $expr` and `&raw mut $expr`. It has existed unstably for ~4 years now, and has been exposed on stable via the `addr_of` and `addr_of_mut` macros since Rust 1.51 (released more than 3 years ago). I think it has become clear that these operations are here to stay. So it is about time we give them proper primitive syntax. This has two advantages over the macro:
- Being macros, `addr_of`/`addr_of_mut` could in theory do arbitrary magic with the expression on which they work. The only "magic" they actually do is using the argument as a place expression rather than as a value expression. Place expressions are already a subtle topic and poorly understood by many programmers; having this hidden behind a macro using unstable language features makes this even worse. Conversely, people do have an idea of what happens below `&`/`&mut`, so we can make the subtle topic a lot more approachable by connecting to existing intuition.
- The name `addr_of` is quite unfortunate from today's perspective, given that we have accepted provenance as a reality, which means that a pointer is *not* just an address. Strict provenance has a method, `addr`, which extracts the address of a pointer; using the term `addr` in two different ways is quite unfortunate. That's why this PR soft-deprecates `addr_of` -- we will wait a long time before actually showing any warning here, but we should start telling people that the "addr" part of this name is somewhat misleading, and `&raw` avoids that potential confusion.
In summary, this syntax improves developers' ability to conceptualize the operational semantics of Rust, while making a fundamental operation frequently used in unsafe code feel properly built in.
Possible questions to consider, based on the RFC and [this](https://github.com/rust-lang/rust/issues/64490#issuecomment-1163802912) great summary by `@CAD97:`
- Some questions are entirely about the semantics. The semantics are the same as with the macros so I don't think this should have any impact on this syntax PR. Still, for completeness' sake:
- Should `&raw const *mut_ref` give a read-only pointer?
- Tracked at: https://github.com/rust-lang/unsafe-code-guidelines/issues/257
- I think ideally the answer is "no". Stacked Borrows says that pointer is read-only, but Tree Borrows says it is mutable.
- What exactly does `&raw const (*ptr).field` require? Answered in [the reference](https://doc.rust-lang.org/nightly/reference/behavior-considered-undefined.html): the arithmetic to compute the field offset follows the rules of `ptr::offset`, making it UB if it goes out-of-bounds. Making this a safe operation (using `wrapping_offset` rules) is considered too much of a loss for alias analysis.
- Choose a different syntax? I don't want to re-litigate the RFC. The only credible alternative that has been proposed is `&raw $place` instead of `&raw const $place`, which (IIUC) could be achieved by making `raw` a contextual keyword in a new edition. The type is named `*const T`, so the explicit `const` is consistent in that regard. `&raw expr` lacks the explicit indication of immutability. However, `&raw const expr` is quite a but longer than `addr_of!(expr)`.
- Shouldn't we have a completely new, better raw pointer type instead? Yes we all want to see that happen -- but I don't think we should block stabilization on that, given that such a nicer type is not on the horizon currently and given the issues with `addr_of!` mentioned above. (If we keep the `&raw $place` syntax free for this, we could use it in the future for that new type.)
- What about the lint the RFC talked about? It hasn't been implemented yet. Given that the problematic code is UB with or without this stabilization, I don't think the lack of the lint should block stabilization.
- I created an issue to track adding it: https://github.com/rust-lang/rust/issues/127724
- Other points from the "future possibilites of the RFC
- "Syntactic sugar" extension: this has not been implemented. I'd argue this is too confusing, we should stick to what the RFC suggested and if we want to do anything about such expressions, add the lint.
- Encouraging / requiring `&raw` in situations where references are often/definitely incorrect: this has been / is being implemented. On packed fields this already is a hard error, and for `static mut` a lint suggesting raw pointers is being rolled out.
- Lowering of casts: this has been implemented. (It's also an invisible implementation detail.)
- `offsetof` woes: we now have native `offset_of` so this is not relevant any more.
To be done before landing:
- [x] Suppress `unused_parens` lint around `&raw {const|mut}` expressions
- See bottom of https://github.com/rust-lang/rust/pull/127679#issuecomment-2264073752 for rationale
- Implementation: https://github.com/rust-lang/rust/pull/128782
- [ ] Update the Reference.
- https://github.com/rust-lang/reference/pull/1567
Fixes https://github.com/rust-lang/rust/issues/64490
cc `@rust-lang/lang` `@rust-lang/opsem`
try-job: x86_64-msvc
try-job: test-various
try-job: dist-various-1
try-job: armhf-gnu
try-job: aarch64-apple
Move ZST ABI handling to `rustc_target`
Currently, target specific handling of ZST function call ABI (specifically passing them indirectly instead of ignoring them) is handled in `rustc_ty_utils`, whereas all other target specific function call ABI handling is located in `rustc_target`. This PR moves the ZST handling to `rustc_target` so that all the target-specific function call ABI handling is in one place. In the process of doing so, this PR fixes#125850 by ensuring that ZST arguments are always correctly ignored in the x86-64 `"sysv64"` ABI; any code which would be affected by this fix would have ICEd before this PR. Tests are also added using `#[rustc_abi(debug)]` to ensure this behaviour does not regress.
Fixes#125850
With the new resolver, a few dependencies get brought in twice with
different licenses. For example, all dependencies from `wasm-tools`
gained Apache-2.0 and MIT options, and with the v2 resolver we were
using one version from before and one version from after this change.
This made tidy's license check difficult.
Update some minimum versions to remove duplicate dependencies and smooth
out license checking.
Modifies `BikeshedIntrinsicFrom` to forbid lifetime extensions on
references. This static check can be opted out of with the
`Assume::lifetimes` flag.
Fixes#129097
Promote Mac Catalyst targets to Tier 2, and ship with rustup
Promote the Mac Catalyst targets `x86_64-apple-ios-macabi` and `aarch64-apple-ios-macabi` to Tier 2, as per [the MCP](https://github.com/rust-lang/compiler-team/issues/761) (see that for motivation and details).
These targets are now also distributed with rustup, although without the sanitizer runtime, as that currently has trouble building, see https://github.com/rust-lang/rust/issues/129069.
Use cnum for extern crate data key
Noticed this when fixing #129184. I still have yet to put up a fix for that (mostly because I'm too lazy to minimize a test, that will come soon though).
Fix `is_val_statically_known` for floats
The LLVM intrinsic name for floats differs from the LLVM type name, so handle them explicitly. Also adds support for `f16` and `f128`.
`f16`/`f128` tracking issue: #116909
Use `ar_archive_writer` for writing COFF import libs on all backends
This is mostly the same as the llvm backend but with the cranelift version copy/pasted in place of the LLVM library.
try-job: x86_64-msvc
try-job: i686-msvc
try-job: i686-mingw
try-job: aarch64-gnu
try-job: aarch64-apple
try-job: test-various
try-job: armhf-gnu
Stabilize `unsafe_attributes`
# Stabilization report
## Summary
This is a tracking issue for the RFC 3325: unsafe attributes
We are stabilizing `#![feature(unsafe_attributes)]`, which makes certain attributes considered 'unsafe', meaning that they must be surrounded by an `unsafe(...)`, as in `#[unsafe(no_mangle)]`.
RFC: rust-lang/rfcs#3325
Tracking issue: #123757
## What is stabilized
### Summary of stabilization
Certain attributes will now be designated as unsafe attributes, namely, `no_mangle`, `export_name`, and `link_section` (stable only), and these attributes will need to be called by surrounding them in `unsafe(...)` syntax. On editions prior to 2024, this is simply an edition lint, but it will become a hard error in 2024. This also works in `cfg_attr`, but `unsafe` is not allowed for any other attributes, including proc-macros ones.
```rust
#[unsafe(no_mangle)]
fn a() {}
#[cfg_attr(any(), unsafe(export_name = "c"))]
fn b() {}
```
For a table showing the attributes that were considered to be included in the list to require unsafe, and subsequent reasoning about why each such attribute was or was not included, see [this comment here](https://github.com/rust-lang/rust/pull/124214#issuecomment-2124753464)
## Tests
The relevant tests are in `tests/ui/rust-2024/unsafe-attributes` and `tests/ui/attributes/unsafe`.
Fixes#126831.
Without this patch, type normalization is not always idempotent, which
leads to all sorts of bugs in places that assume that normalizing a
normalized type does nothing.
Use `FnSig` instead of raw `FnDecl` for `ForeignItemKind::Fn`, fix ICE for `Fn` trait error on safe foreign fn
Let's use `hir::FnSig` instead of `hir::FnDecl + hir::Safety` for `ForeignItemKind::Fn`. This consolidates some handling code between normal fns and foreign fns.
Separetly, fix an ICE where we weren't handling `Fn` trait errors for safe foreign fns.
If perf is bad for the first commit, I can rework the ICE fix to not rely on it. But if perf is good, I prefer we fix and clean up things all at once 👍
r? spastorino
Fixes#128764
Rollup of 6 pull requests
Successful merges:
- #128989 (Emit an error for invalid use of the linkage attribute)
- #129167 (mir/pretty: use `Option` instead of `Either<Once, Empty>`)
- #129168 (Return correct HirId when finding body owner in diagnostics)
- #129191 (rustdoc-json: Clean up serialization and printing.)
- #129192 (Remove useless attributes in merged doctest generated code)
- #129196 (Remove a useless ref/id/ref round-trip from `pattern_from_hir`)
r? `@ghost`
`@rustbot` modify labels: rollup
Remove a useless ref/id/ref round-trip from `pattern_from_hir`
This re-lookup of `&hir::Pat` by its ID appears to be an artifact of earlier complexity that has since been removed from the compiler.
Merely deleting the let/match results in borrow errors, but sprinkling `'tcx` in the signature allows it to work again, so I suspect that this code's current function is simply to compensate for overly loose lifetimes in the signature. Perhaps it made more sense at a time when HIR lifetimes were not tied to `'tcx`.
I spotted this while working on some more experimental changes, which is why I've extracted it into its own PR.
Return correct HirId when finding body owner in diagnostics
Fixes#129145Fixes#128810
r? ```@compiler-errors```
```rust
fn generic<const N: u32>() {}
trait Collate<const A: u32> {
type Pass;
fn collate(self) -> Self::Pass;
}
impl<const B: u32> Collate<B> for i32 {
type Pass = ();
fn collate(self) -> Self::Pass {
generic::<{ true }>()
//~^ ERROR: mismatched types
}
}
```
When type checking the `{ true }` anon const we would error with a type mismatch. This then results in diagnostics code attempting to check whether its due to a type mismatch with the return type. That logic was implemented by walking up the hir until we reached the body owner, except instead of using the `enclosing_body_owner` function it special cased various hir nodes incorrectly resulting in us walking out of the anon const and stopping at `fn collate` instead.
This then resulted in diagnostics logic inside of the anon consts `ParamEnv` attempting to do trait solving involving the `<i32 as Collate<B>>::Pass` type which ICEs because it is in the wrong environment.
I have rewritten this function to just walk up until it hits the `enclosing_body_owner` and made some other changes since I found this pretty hard to read/understand. Hopefully it's easier to understand now, it also makes it more obvious that this is not implemented in a very principled way and is definitely missing cases :)
mir/pretty: use `Option` instead of `Either<Once, Empty>`
`Either` is wasteful for a one-or-none iterator, especially since `Once`
is already an `option::IntoIter` internally. We don't really need any of
the iterator mechanisms in this case, just a single conditional insert.
Emit an error for invalid use of the linkage attribute
fixes#128486
Currently, the use of the linkage attribute for Mod, Impl,... is incorrectly permitted. This PR will correct this issue by generating errors, and I've also added some UI test cases for it.
Related: #128552.
Detect multiple crate versions on method not found
When a type comes indirectly from one crate version but the imported trait comes from a separate crate version, the called method won't be found. We now show additional context:
```
error[E0599]: no method named `foo` found for struct `dep_2_reexport::Type` in the current scope
--> multiple-dep-versions.rs:8:10
|
8 | Type.foo();
| ^^^ method not found in `Type`
|
note: there are multiple different versions of crate `dependency` in the dependency graph
--> multiple-dep-versions.rs:4:32
|
4 | use dependency::{do_something, Trait};
| ^^^^^ `dependency` imported here doesn't correspond to the right crate version
|
::: ~/rust/build/x86_64-unknown-linux-gnu/test/run-make/crate-loading/rmake_out/multiple-dep-versions-1.rs:4:1
|
4 | pub trait Trait {
| --------------- this is the trait that was imported
|
::: ~/rust/build/x86_64-unknown-linux-gnu/test/run-make/crate-loading/rmake_out/multiple-dep-versions-2.rs:4:1
|
4 | pub trait Trait {
| --------------- this is the trait that is needed
5 | fn foo(&self);
| --- the method is available for `dep_2_reexport::Type` here
```
Fix#128569, fix#110926, fix#109161, fix#81659, fix#51458, fix#32611. Follow up to #124944.
`Either` is wasteful for a one-or-none iterator, especially since `Once`
is already an `option::IntoIter` internally. We don't really need any of
the iterator mechanisms in this case, just a single conditional insert.
Fix wrong source location for some incorrect macro definitions
Fixes#95463
Currently the code will consume the next token tree after `var` when trying to parse `$var:some_type` even when it's not a `:` (e.g. a `$` when input is `($foo $bar:tt) => {}`). Additionally it will return the wrong span when it's not a `:`.
This PR fixes these problems.
Special-case alias ty during the delayed bug emission in `try_from_lit`
This PR tries to fix#116308.
A delayed bug in `try_from_lit` will not be emitted so that the compiler will not ICE when it sees the pair `(ast::LitKind::Int, ty::TyKind::Alias)` in `lit_to_const` (called from `try_from_lit`).
This PR is related to an unstable feature `adt_const_params` (#95174).
r? ``@BoxyUwU``
Rollup of 9 pull requests
Successful merges:
- #128064 (Improve docs for Waker::noop and LocalWaker::noop)
- #128922 (rust-analyzer: use in-tree `pattern_analysis` crate)
- #128965 (Remove `print::Pat` from the printing of `WitnessPat`)
- #129018 (Migrate `rlib-format-packed-bundled-libs` and `native-link-modifier-bundle` `run-make` tests to rmake)
- #129037 (Port `run-make/libtest-json` and `run-make/libtest-junit` to rmake)
- #129078 (`ParamEnvAnd::fully_perform`: we have an `ocx`, use it)
- #129110 (Add a comment explaining the return type of `Ty::kind`.)
- #129111 (Port the `sysroot-crates-are-unstable` Python script to rmake)
- #129135 (crashes: more tests)
r? `@ghost`
`@rustbot` modify labels: rollup
Remove `print::Pat` from the printing of `WitnessPat`
After the preliminary work done in #128536, we can now get rid of `print::Pat` entirely.
- First, we introduce a variant `PatKind::Print(String)`.
- Then we incrementally remove each other variant of `PatKind`, by having the relevant code produce `PatKind::Print` instead.
- Once `PatKind::Print` is the only remaining variant, it becomes easy to remove `print::Pat` and replace it with `String`.
There is more cleanup that I have in mind, but this seemed like a natural stopping point for one PR.
r? ```@Nadrieril```
This commit does the following.
- Renames `collect_tokens_trailing_token` as `collect_tokens`, because
(a) it's annoying long, and (b) the `_trailing_token` bit is less
accurate now that its types have changed.
- In `collect_tokens`, adds a `Option<CollectPos>` argument and a
`UsePreAttrPos` in the return type of `f`. These are used in
`parse_expr_force_collect` (for vanilla expressions) and in
`parse_stmt_without_recovery` (for two different cases of expression
statements). Together these ensure are enough to fix all the problems
with token collection and assoc expressions. The changes to the
`stringify.rs` test demonstrate some of these.
- Adds a new test. The code in this test was causing an assertion
failure prior to this commit, due to an invalid `NodeRange`.
The extra complexity is annoying, but necessary to fix the existing
problems.
This pre-existing type is suitable for use with the return value of the
`f` parameter in `collect_tokens_trailing_token`. The more descriptive
name will be useful because the next commit will add another boolean
value to the return value of `f`.
Fix projections when parent capture is by-ref but child capture is by-value in the `ByMoveBody` pass
This fixes a somewhat strange bug where we build the incorrect MIR in #129074. This one is weird, but I don't expect it to actually matter in practice since it almost certainly results in a move error in borrowck. However, let's not ICE.
Given the code:
```
#![feature(async_closure)]
// NOT copy.
struct Ty;
fn hello(x: &Ty) {
let c = async || {
*x;
//~^ ERROR cannot move out of `*x` which is behind a shared reference
};
}
fn main() {}
```
The parent coroutine-closure captures `x: &Ty` by-ref, resulting in an upvar of `&&Ty`. The child coroutine captures `x` by-value, resulting in an upvar of `&Ty`. When constructing the by-move body for the coroutine-closure, we weren't applying an additional deref projection to convert the parent capture into the child capture, resulting in an type error in assignment, which is a validation ICE.
As I said above, this only occurs (AFAICT) in code that eventually results in an error, because it is only triggered by HIR that attempts to move a non-copy value out of a ref. This doesn't occur if `Ty` is `Copy`, since we'd instead capture `x` by-ref in the child coroutine.
Fixes#129074
Infer async closure args from `Fn` bound even if there is no corresponding `Future` bound on return
In #127482, I implemented the functionality to infer an async closure signature when passed into a function that has `Fn` + `Future` where clauses that look like:
```
fn whatever(callback: F)
where
F: Fn(Arg) -> Fut,
Fut: Future<Output = Out>,
```
However, #127781 demonstrates that this is still incomplete to address the cases users care about. So let's not bail when we fail to find a `Future` bound, and try our best to just use the args from the `Fn` bound if we find it. This is *fine* since most users of closures only really care about the *argument* types for inference guidance, since we require the receiver of a `.` method call to be known in order to probe methods.
When I experimented with programmatically rewriting `|| async {}` to `async || {}` in #127827, this also seems to have fixed ~5000 regressions (probably all coming from usages `TryFuture`/`TryStream` from futures-rs): the [before](https://github.com/rust-lang/rust/pull/127827#issuecomment-2254061733) and [after](https://github.com/rust-lang/rust/pull/127827#issuecomment-2255470176) crater runs.
Fixes#127781.
Use `impl PartialEq<TokenKind> for Token` more.
This lets us compare a `Token` with a `TokenKind`. It's used a lot, but can be used even more, avoiding the need for some `.kind` uses.
r? `@spastorino`
Unconditionally allow shadow call-stack sanitizer for AArch64
It is possible to do so whenever `-Z fixed-x18` is applied.
cc ``@Darksonn`` for context
The reasoning is that, as soon as reservation on `x18` is forced through the flag `fixed-x18`, on AArch64 the option to instrument with [Shadow Call Stack sanitizer](https://clang.llvm.org/docs/ShadowCallStack.html) is then applicable regardless of the target configuration.
At the every least, we would like to relax the restriction on specifically `aarch64-unknonw-none`. For this option, we can include a documentation change saying that users of compiled objects need to ensure that they are linked to runtime with Shadow Call Stack instrumentation support.
Related: #121972
Rework MIR inlining debuginfo so function parameters show up in debuggers.
Line numbers of multiply-inlined functions were fixed in #114643 by using a single DISubprogram. That, however, triggered assertions because parameters weren't deduplicated. The "solution" to that in #115417 was to insert a DILexicalScope below the DISubprogram and parent all of the parameters to that scope. That fixed the assertion, but debuggers (including gdb and lldb) don't recognize variables that are not parented to the subprogram itself as parameters, even if they are emitted with DW_TAG_formal_parameter.
Consider the program:
```rust
use std::env;
#[inline(always)]
fn square(n: i32) -> i32 {
n * n
}
#[inline(never)]
fn square_no_inline(n: i32) -> i32 {
n * n
}
fn main() {
let x = square(env::vars().count() as i32);
let y = square_no_inline(env::vars().count() as i32);
println!("{x} == {y}");
}
```
When making a release build with debug=2 and rustc 1.82.0-nightly (8b3870784 2024-08-07)
```
(gdb) r
Starting program: /ephemeral/tmp/target/release/tmp [Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Breakpoint 1, tmp::square () at src/main.rs:5
5 n * n
(gdb) info args
No arguments.
(gdb) info locals
n = 31
(gdb) c
Continuing.
Breakpoint 2, tmp::square_no_inline (n=31) at src/main.rs:10
10 n * n
(gdb) info args
n = 31
(gdb) info locals
No locals.
```
This issue is particularly annoying because it removes arguments from stack traces.
The DWARF for the inlined function looks like this:
```
< 2><0x00002132 GOFF=0x00002132> DW_TAG_subprogram
DW_AT_linkage_name _ZN3tmp6square17hc507052ff3d2a488E
DW_AT_name square
DW_AT_decl_file 0x0000000f /ephemeral/tmp/src/main.rs
DW_AT_decl_line 0x00000004
DW_AT_type 0x00001a56<.debug_info+0x00001a56>
DW_AT_inline DW_INL_inlined
< 3><0x00002142 GOFF=0x00002142> DW_TAG_lexical_block
< 4><0x00002143 GOFF=0x00002143> DW_TAG_formal_parameter
DW_AT_name n
DW_AT_decl_file 0x0000000f /ephemeral/tmp/src/main.rs
DW_AT_decl_line 0x00000004
DW_AT_type 0x00001a56<.debug_info+0x00001a56>
< 4><0x0000214e GOFF=0x0000214e> DW_TAG_null
< 3><0x0000214f GOFF=0x0000214f> DW_TAG_null
```
That DW_TAG_lexical_block inhibits every debugger I've tested from recognizing 'n' as a parameter.
This patch removes the additional lexical scope. Parameters can be easily deduplicated by a tuple of their scope and the argument index, at the trivial cost of taking a Hash + Eq bound on DIScope.
Use the `enum2$` Natvis visualiser for repr128 C-style enums
Use the preexisting `enum2$` Natvis visualiser to allow PDB debuggers to display fieldless `#[repr(u128)]]`/`#[repr(i128)]]` enums correctly.
Tracking issue: #56071
try-job: x86_64-msvc
Use `append` instead of `extend(drain(..))`
The first commit adds `IndexVec::append` that forwards to `Vec::append`, and uses it in a couple places.
The second commit updates `indexmap` for its new `IndexMap::append`, and also uses that in a couple places.
These changes are similar to what [`clippy::extend_with_drain`](https://rust-lang.github.io/rust-clippy/master/index.html#/extend_with_drain) would suggest, just for other collection types.
derive(SmartPointer): register helper attributes
Fix#128888
This PR enables built-in macros to register helper attributes, if any, to support correct name resolution in the correct lexical scope under the macros.
Also, `#[pointee]` is moved into the scope under `derive(SmartPointer)`.
cc `@Darksonn` `@davidtwco`
Add powerpc-unknown-linux-muslspe compile target
This is almost identical to already existing targets:
- powerpc_unknown_linux_musl.rs
- powerpc_unknown_linux_gnuspe.rs
It has support for PowerPC SPE (muslspe), which
can be used with GCC version up to 8. It is useful for Freescale or IBM cores like e500.
This was verified to be working with OpenWrt build system for CZ.NIC's Turris 1.x routers, which are using Freescale P2020, e500v2, so add it as a Tier 3 target.
Follow-up of https://github.com/rust-lang/rust/pull/100860
Make the rendered html doc for rustc better
This PR adds `|` to make the html doc of [`rustc_error::Level`](https://doc.rust-lang.org/1.80.0/nightly-rustc/rustc_errors/enum.Level.html) rendered better. Previsouly it looks good in the source code, but not rendered correctly in the html doc.
r? `@GuillaumeGomez`
Record the correct target type when coercing fn items/closures to pointers
Self-explanatory. We were previously not recording the *target* type of a coercion as the output of an adjustment. This should remedy that.
We must also modify the function pointer casts in MIR typeck to use subtyping, since those broke since #118247.
r? lcnr
`-Znext-solver` caching
This PR has two major changes while also fixing multiple issues found via fuzzing.
The main optimization is the ability to not discard provisional cache entries when popping the highest cycle head the entry depends on. This fixes the hang in Fuchsia with `-Znext-solver=coherence`.
It also bails if the result of a fixpoint iteration is ambiguous, even without reaching a fixpoint. This is necessary to avoid exponential blowup if a coinductive cycle results in ambiguity, e.g. due to unknowable candidates in coherence.
Updating stack entries pretty much exclusively happens lazily now, so `fn check_invariants` ended up being mostly useless and I've removed it. See https://gist.github.com/lcnr/8de338fdb2685581e17727bbfab0622a for the invariants we would be able to assert with it.
For a general overview, see the in-process update of the relevant rustc-dev-guide chapter: https://hackmd.io/1ALkSjKlSCyQG-dVb_PUHw
r? ```@compiler-errors```
Rollup of 7 pull requests
Successful merges:
- #122884 (Optimize integer `pow` by removing the exit branch)
- #127857 (Allow to customize `// TODO:` comment for deprecated safe autofix)
- #129034 (Add `#[must_use]` attribute to `Coroutine` trait)
- #129049 (compiletest: Don't panic on unknown JSON-like output lines)
- #129050 (Emit a warning instead of an error if `--generate-link-to-definition` is used with other output formats than HTML)
- #129056 (Fix one usage of target triple in bootstrap)
- #129058 (Add mw back to review rotation)
r? `@ghost`
`@rustbot` modify labels: rollup
Remove a no-longer-true assert
Fixes https://github.com/rust-lang/rust/issues/129009
The assert was simply no longer true. I thought my test suite was thorough but I had not noticed these `let`-specific diagnostics codepaths.
r? `@compiler-errors`
Shrink `TyKind::FnPtr`.
By splitting the `FnSig` within `TyKind::FnPtr` into `FnSigTys` and `FnHeader`, which can be packed more efficiently. This reduces the size of the hot `TyKind` type from 32 bytes to 24 bytes on 64-bit platforms. This reduces peak memory usage by a few percent on some benchmarks. It also reduces cache misses and page faults similarly, though this doesn't translate to clear cycles or wall-time improvements on CI.
r? `@compiler-errors`
Allow to customize `// TODO:` comment for deprecated safe autofix
Relevant for the deprecation of `CommandExt::before_exit` in #125970.
Tracking:
- #124866
bootstrap: don't use rustflags for `--rustc-args`
r? `@onur-ozkan`
This is going to require a bit of context.
https://github.com/rust-lang/rust/pull/47558 has added `--rustc-args` to `./x test` to allow passing flags when building `compiletest` tests. It was made specifically because using `RUSTFLAGS` would rebuild the compiler/stdlib, which would in turn require the flag you want to build tests with to successfully bootstrap.
#113178 made the request that it also works for other tests and doctests. This is not trivial to support across the board for `library`/`compiler` unit-tests/doctests and across stages. This issue was closed in #113948 by using `RUSTFLAGS`, seemingly incorrectly since https://github.com/rust-lang/rust/pull/123489 fixed that part to make it work.
Unfortunately #123489/#113948 have regressed the goals of `--rustc-args`:
- now we can't use rustc args that don't bootstrap, to run the UI tests: we can't test incomplete features. The new trait solver doesn't bootstrap, in-progress borrowck/polonius changes don't bootstrap, some other features are similarly incomplete, etc.
- using the flag now rebuilds everything from scratch: stage0 stdlib, stage1 compiler, stage1 stdlib. You don't need to re-do all this to compile UI tests, you only need the latter to run stdlib tests with a new flag, etc. This happens for contributors, but also on CI today. (Not to mention that in doing that it will rebuild things with flags that are not meant to be used, e.g. stdlib cfgs that don't exist in the compiler; or you could also imagine that this silently enables flags that were not meant to be enabled in this way).
Since then, bd71c71ea0 has started using it to test a stdlib feature, relying on the fact that it now rebuilds everything. So #125011 also regressed CI times more than necessary because it rebuilds everything instead of just stage 1 stdlib.
It's not easy for me to know how to properly fix#113178 in bootstrap, but #113948/#123489 are not it since they regress the initial intent. I'd think bootstrap would have to know from the list of test targets that are passed that the `library` or `compiler` paths that are passed could require rebuilding these crates with different rustflags, probably also depending on stages. Therefore I would not be able to fix it, and will just try in this PR to unregress the situation to unblock the initial use-case.
It seems miri now also uses `./x miri --rustc-args` in this incorrect meaning to rebuild the `library` paths they support to run with the new args. I've not made any bootstrap changes related to `./x miri` in this PR, so `--rustc-args` wouldn't work there anymore. I'd assume this would need to use rustflags again but I don't know how to make that work properly in bootstrap, hence opening as draft, so you can tell me how to do that. I assume we don't want to break their use-case again now that it exists, even though there are ways to use `./x test` to do exactly that.
`RUSTFLAGS_NOT_BOOTSTRAP=flag ./x test library/std` is a way to run unit tests with a new flag without rebuilding everything, while with #123489 there is no way anymore to run tests with a flag that doesn't bootstrap.
---
edit: after review, this PR:
- renames `./x test --rustc-args` to `./x test --compiletest-rustc-args` as it only applies there, and cannot use rustflags for this purpose.
- fixes the regression that using these args rebuilt everything from scratch
- speeds up some CI jobs via the above point
- removes `./x miri --rustc-args` as only library tests are supported, needs to rebuild libstd, and `./x miri --compiletest-rustc-args` wouldn't work since compiletests are not supported.
Refactor `powerpc64` call ABI handling
As the [specification](https://openpowerfoundation.org/specifications/64bitelfabi/) for the ELFv2 ABI states that returned aggregates are returned like arguments as long as they are at most two doublewords, I've merged the `classify_arg` and `classify_ret` functions to reduce code duplication. The only functional change is to fix#128579: the `classify_ret` function was incorrectly handling aggregates where `bits > 64 && bits < 128`. I've used the aggregate handling implementation from `classify_arg` which doesn't have this issue.
`@awilfox` could you test this on `powerpc64-unknown-linux-musl`? I'm only able to cross-test on `powerpc64-unknown-linux-gnu` and `powerpc64le-unknown-linux-gnu` locally at the moment, and as a tier 3 target `powerpc64-unknown-linux-musl` has zero CI coverage.
Fixes: #128579
miri: make vtable addresses not globally unique
Miri currently gives vtables a unique global address. That's not actually matching reality though. So this PR enables Miri to generate different addresses for the same type-trait pair.
To avoid generating an unbounded number of `AllocId` (and consuming unbounded amounts of memory), we use the "salt" technique that we also already use for giving constants non-unique addresses: the cache is keyed on a "salt" value n top of the actually relevant key, and Miri picks a random salt (currently in the range `0..16`) each time it needs to choose an `AllocId` for one of these globals -- that means we'll get up to 16 different addresses for each vtable. The salt scheme is integrated into the global allocation deduplication logic in `tcx`, and also used for functions and string literals. (So this also fixes the problem that casting the same function to a fn ptr over and over will consume unbounded memory.)
r? `@saethlin`
Fixes https://github.com/rust-lang/miri/issues/3737
Line numbers of multiply-inlined functions were fixed in #114643 by using a
single DISubprogram. That, however, triggered assertions because parameters
weren't deduplicated. The "solution" to that in #115417 was to insert a
DILexicalScope below the DISubprogram and parent all of the parameters to that
scope. That fixed the assertion, but debuggers (including gdb and lldb) don't
recognize variables that are not parented to the subprogram itself as parameters,
even if they are emitted with DW_TAG_formal_parameter.
Consider the program:
use std::env;
fn square(n: i32) -> i32 {
n * n
}
fn square_no_inline(n: i32) -> i32 {
n * n
}
fn main() {
let x = square(env::vars().count() as i32);
let y = square_no_inline(env::vars().count() as i32);
println!("{x} == {y}");
}
When making a release build with debug=2 and rustc 1.82.0-nightly (8b3870784 2024-08-07)
(gdb) r
Starting program: /ephemeral/tmp/target/release/tmp
[Thread debugging using libthread_db enabled]
Using host libthread_db library "/lib/x86_64-linux-gnu/libthread_db.so.1".
Breakpoint 1, tmp::square () at src/main.rs:5
5 n * n
(gdb) info args
No arguments.
(gdb) info locals
n = 31
(gdb) c
Continuing.
Breakpoint 2, tmp::square_no_inline (n=31) at src/main.rs:10
10 n * n
(gdb) info args
n = 31
(gdb) info locals
No locals.
This issue is particularly annoying because it removes arguments from stack traces.
The DWARF for the inlined function looks like this:
< 2><0x00002132 GOFF=0x00002132> DW_TAG_subprogram
DW_AT_linkage_name _ZN3tmp6square17hc507052ff3d2a488E
DW_AT_name square
DW_AT_decl_file 0x0000000f /ephemeral/tmp/src/main.rs
DW_AT_decl_line 0x00000004
DW_AT_type 0x00001a56<.debug_info+0x00001a56>
DW_AT_inline DW_INL_inlined
< 3><0x00002142 GOFF=0x00002142> DW_TAG_lexical_block
< 4><0x00002143 GOFF=0x00002143> DW_TAG_formal_parameter
DW_AT_name n
DW_AT_decl_file 0x0000000f /ephemeral/tmp/src/main.rs
DW_AT_decl_line 0x00000004
DW_AT_type 0x00001a56<.debug_info+0x00001a56>
< 4><0x0000214e GOFF=0x0000214e> DW_TAG_null
< 3><0x0000214f GOFF=0x0000214f> DW_TAG_null
That DW_TAG_lexical_block inhibits every debugger I've tested from recognizing
'n' as a parameter.
This patch removes the additional lexical scope. Parameters can be easily
deduplicated by a tuple of their scope and the argument index, at the trivial
cost of taking a Hash + Eq bound on DIScope.
Store `do_not_recommend`-ness in impl header
Alternative to #128674
It's less flexible, but also less invasive. Hopefully it's also performant. I'd recommend we think separately about the design for how to gate arbitrary diagnostic attributes moving forward.
Normalize struct tail properly for `dyn` ptr-to-ptr casting in new solver
Realized that the new solver didn't handle ptr-to-ptr casting correctly.
r? lcnr
Built on #128694
When encountering the following, mention the precense of conflicting crates:
```
error[E0599]: no function or associated item named `get_decoded` found for struct `HpkeConfig` in the current scope
--> src/main.rs:7:17
|
7 | HpkeConfig::get_decoded(&foo);
| ^^^^^^^^^^^ function or associated item not found in `HpkeConfig`
|
note: if you're trying to build a new `HpkeConfig`, consider using `HpkeConfig::new` which returns `HpkeConfig`
--> ~/.cargo/registry/src/index.crates.io-6f17d22bba15001f/janus_messages-0.3.1/src/lib.rs:908:5
|
908 | / pub fn new(
909 | | id: HpkeConfigId,
910 | | kem_id: HpkeKemId,
911 | | kdf_id: HpkeKdfId,
912 | | aead_id: HpkeAeadId,
913 | | public_key: HpkePublicKey,
914 | | ) -> HpkeConfig {
| |___________________^
note: there are multiple different versions of crate `prio` in the dependency graph
--> src/main.rs:1:5
|
1 | use prio::codec::Decode;
| ^^^^^^^^^^^^^^^^^^^ `prio` imported here doesn't correspond to the right crate version
|
::: ~/.cargo/registry/src/index.crates.io-6f17d22bba15001f/prio-0.9.1/src/codec.rs:35:1
|
35 | pub trait Decode: Sized {
| ----------------------- this is the trait that was imported
|
::: ~/.cargo/registry/src/index.crates.io-6f17d22bba15001f/prio-0.10.3/src/codec.rs:35:1
|
35 | pub trait Decode: Sized {
| ----------------------- this is the trait that is needed
...
43 | fn get_decoded(bytes: &[u8]) -> Result<Self, CodecError> {
| -------------------------------------------------------- the method is available for `HpkeConfig` here
help: there is an associated function `decode` with a similar name
|
7 | HpkeConfig::decode(&foo);
| ~~~~~~
```
When a type comes indirectly from one crate version but the imported trait comes from a separate crate version, the called method won't be found. We now show additional context:
```
error[E0599]: no method named `foo` found for struct `dep_2_reexport::Type` in the current scope
--> multiple-dep-versions.rs:8:10
|
8 | Type.foo();
| ^^^ method not found in `Type`
|
note: you have multiple different versions of crate `dependency` in your dependency graph
--> multiple-dep-versions.rs:4:32
|
4 | use dependency::{do_something, Trait};
| ^^^^^ `dependency` imported here doesn't correspond to the right crate version
|
::: ~/rust/build/x86_64-unknown-linux-gnu/test/run-make/crate-loading/rmake_out/multiple-dep-versions-1.rs:4:1
|
4 | pub trait Trait {
| --------------- this is the trait that was imported
|
::: ~/rust/build/x86_64-unknown-linux-gnu/test/run-make/crate-loading/rmake_out/multiple-dep-versions-2.rs:4:1
|
4 | pub trait Trait {
| --------------- this is the trait that is needed
5 | fn foo(&self);
| --- the method is available for `dep_2_reexport::Type` here
```
Fix bug in `Parser::look_ahead`.
The special case was failing to handle invisible delimiters on one path.
Fixes (but doesn't close until beta backported) #128895.
r? `@davidtwco`
const vector passed through to codegen
This allows constant vectors using a repr(simd) type to be propagated
through to the backend by reusing the functionality used to do a similar
thing for the simd_shuffle intrinsic
#118209
r? RalfJung
nontemporal_store: make sure that the intrinsic is truly just a hint
The `!nontemporal` flag for stores in LLVM *sounds* like it is just a hint, but actually, it is not -- at least on x86, non-temporal stores need very special treatment by the programmer or else the Rust memory model breaks down. LLVM still treats these stores as-if they were normal stores for optimizations, which is [highly dubious](https://github.com/llvm/llvm-project/issues/64521). Let's avoid all that dubiousness by making our own non-temporal stores be truly just a hint, which is possible on some targets (e.g. ARM). On all other targets, non-temporal stores become regular stores.
~~Blocked on https://github.com/rust-lang/stdarch/pull/1541 propagating to the rustc repo, to make sure the `_mm_stream` intrinsics are unaffected by this change.~~
Fixes https://github.com/rust-lang/rust/issues/114582
Cc `@Amanieu` `@workingjubilee`
this makes it easier to maintain and modify going forward.
There may be a small performance cost as we now need to
access the provisional cache *and* walk through the stack
to detect cycles. However, the provisional cache should be
mostly empty and the stack should only have a few elements
so the performance impact is likely minimal.
Given the complexity of the search graph maintainability
trumps linear performance improvements.