Temporarily revert to NonZeroUsize in rustc-abi to fix building on stable
rust-analyzer uses an auto-published version of `rustc-abi`, but `NonZero` isn't yet stable. This prevents us from updating the RA subtree, which is quite old already.
I can file a revert PR after the release.
Improve parser
Fixes#124935.
- Add a few more help diagnostics to incorrect semicolons
- Overall improved that function
- Addded a few comments
- Renamed diff_marker fns to git_diff_marker
Fix println! ICE when parsing percent prefix number
This PR fixes#125002 ICE occurring, for example, with `println!("%100000", 1)` or `println!("% 100000", 1)`.
## Test Case/Change Explanation
The return type of `Num::from_str` has been changed to `Option<Self>` to handle errors when parsing large integers fails.
1. The first `println!` in the test case covers the change of the first `Num::from_str` usage in `format_foreign.rs:426`.
2. The second `println!` in the test case covers the change of the second `Num::from_str` usage in line 460.
3. The 3rd to 5th `Num::from_str` usages behave the same as before.
The 3rd usage would cause an ICE when `num > u16::MAX` in the previous version, but this commit does not include a fix for the ICE in `println!("{:100000$}")`. I think we need to emit an error in the compiler and have more discussion in another issue/PR.
Update `expr` matcher for Edition 2024 and add `expr_2021` nonterminal
This commit adds a new nonterminal `expr_2021` in macro patterns, and `expr_fragment_specifier_2024` feature flag.
This change also updates `expr` so that on Edition 2024 it will also match `const { ... }` blocks, while `expr_2021` preserves the current behavior of `expr`, matching expressions without `const` blocks.
Joint work with `@vincenzopalazzo.`
Issue #123742
Do not suggest constraining the `&self` param, but rather the return type.
If that is wrong (because it is not sufficient), a follow up error will tell the
user to fix it. This way we lower the chances of *over* constraining, but still
get the cake of "correctly" contrained in two steps.
This is a correct suggestion:
```
error: lifetime may not live long enough
--> $DIR/ex3-both-anon-regions-return-type-is-anon.rs:9:9
|
LL | fn foo<'a>(&self, x: &i32) -> &i32 {
| - - let's call the lifetime of this reference `'1`
| |
| let's call the lifetime of this reference `'2`
LL | x
| ^ method was supposed to return data with lifetime `'2` but it is returning data with lifetime `'1`
|
help: consider introducing a named lifetime parameter and update trait if needed
|
LL | fn foo<'a>(&self, x: &'a i32) -> &'a i32 {
| ++ ++
```
While this is incomplete because it should suggestino `&'a self`
```
error: lifetime may not live long enough
--> $DIR/ex3-both-anon-regions-self-is-anon.rs:7:19
|
LL | fn foo<'a>(&self, x: &Foo) -> &Foo {
| - - let's call the lifetime of this reference `'1`
| |
| let's call the lifetime of this reference `'2`
LL | if true { x } else { self }
| ^ method was supposed to return data with lifetime `'2` but it is returning data with lifetime `'1`
|
help: consider introducing a named lifetime parameter and update trait if needed
|
LL | fn foo<'a>(&self, x: &'a Foo) -> &'a Foo {
| ++ ++
```
but the follow up error is
```
error: lifetime may not live long enough
--> tests/ui/lifetimes/lifetime-errors/ex3-both-anon-regions-self-is-anon.rs:7:30
|
6 | fn foo<'a>(&self, x: &'a Foo) -> &'a Foo {
| -- - let's call the lifetime of this reference `'1`
| |
| lifetime `'a` defined here
7 | if true { x } else { self }
| ^^^^ method was supposed to return data with lifetime `'a` but it is returning data with lifetime `'1`
|
help: consider introducing a named lifetime parameter and update trait if needed
|
6 | fn foo<'a>(&'a self, x: &'a Foo) -> &'a Foo {
| ++
```
```
error: lifetime may not live long enough
--> $DIR/lt-ref-self.rs:12:9
|
LL | fn ref_self(&self, f: &u32) -> &u32 {
| - - let's call the lifetime of this reference `'1`
| |
| let's call the lifetime of this reference `'2`
LL | f
| ^ method was supposed to return data with lifetime `'2` but it is returning data with lifetime `'1`
|
help: consider introducing a named lifetime parameter and update trait if needed
|
LL | fn ref_self<'b>(&'b self, f: &'b u32) -> &'b u32 {
| ++++ ++ ++ ++
```
```
error: lifetime may not live long enough
--> f205.rs:8:16
|
7 | fn resolve_symbolic_reference(&self, reference: Option<Reference>) -> Option<Reference> {
| - --------- has type `Option<Reference<'1>>`
| |
| let's call the lifetime of this reference `'2`
8 | return reference;
| ^^^^^^^^^ method was supposed to return data with lifetime `'2` but it is returning data with lifetime `'1`
|
help: consider introducing a named lifetime parameter
|
7 | fn resolve_symbolic_reference<'a>(&'a self, reference: Option<Reference<'a>>) -> Option<Reference<'a>> {
| ++++ ++ ++++ ++++
```
The correct suggestion would be
```
help: consider introducing a named lifetime parameter
|
7 | fn resolve_symbolic_reference<'a>(&self, reference: Option<Reference<'a>>) -> Option<Reference<'a>> {
| ++++ ++++ ++++
```
but we are not doing the analysis to detect that yet. If we constrain `&'a self`, then the return type with a borrow will implicitly take its lifetime from `'a`, it is better to make it explicit in the suggestion, in case that `&self` *doesn't* need to be `'a`, but the return does.
```
error: lifetime may not live long enough
--> $DIR/ex3-both-anon-regions-both-are-structs-2.rs:7:5
|
LL | fn foo(mut x: Ref, y: Ref) {
| ----- - has type `Ref<'_, '1>`
| |
| has type `Ref<'_, '2>`
LL | x.b = y.b;
| ^^^^^^^^^ assignment requires that `'1` must outlive `'2`
|
help: consider introducing a named lifetime parameter
|
LL | fn foo<'a>(mut x: Ref<'a, 'a>, y: Ref<'a, 'a>) {
| ++++ ++++++++ ++++++++
```
As can be seen above, it currently doesn't try to compare the `ty::Ty` lifetimes that diverged vs the `hir::Ty` to correctly suggest the following
```
help: consider introducing a named lifetime parameter
|
LL | fn foo<'a>(mut x: Ref<'_, 'a>, y: Ref<'_, 'a>) {
| ++++ ++++++++ ++++++++
```
but I believe this to still be an improvement over the status quo.
CC #40990.
expand: fix minor diagnostics bug
The error mentions `///`, when it's actually `//!`:
```
error[E0658]: attributes on expressions are experimental
--> test.rs:4:9
|
4 | //! wah
| ^^^^^^^
|
= note: see issue https://github.com/rust-lang/rust/issues/15701 <https://github.com/rust-lang/rust/issues/15701> for more information
= help: add `#![feature(stmt_expr_attributes)]` to the crate attributes to enable
= help: `///` is for documentation comments. For a plain comment, use `//`.
```
Enable `rust-lld` on nightly `x86_64-unknown-linux-gnu`
We believe we have done virtually all the internal work and tests we could to prepare for using `lld` as the default linker (at least on Linux). We're IMHO at a point where we'd need to expand testing and coverage in order to make progress on this effort.
Therefore, for further testing and gathering real-world feedback, unexpected issues and use-cases, this PR enables `rust-lld` as the default linker:
- on nightly only (and dev channel)
- on `x86_64-unknown-linux-gnu` only
- when not using an external LLVM (except `download-ci-llvm`), so that distros are not impacted
as described in more detail in this [zulip thread](https://rust-lang.zulipchat.com/#narrow/stream/131828-t-compiler/topic/Enabling.20.60rust-lld.60.20on.20nightly.20.60x86_64-unknown-linux-gnu.60/near/433709343).
In case any issues happen to users, as e.g. lld is not bug-for-bug compatible with GNU ld, it's easy to disable with `-Zlinker-features=-lld` to revert to using the system's default linker.
---
I don't know who should review this kind of things, as it's somewhat of a crosscutting effort. Compiler contributor, compiler performance WG and infra member sounds perfect, so r? `@Mark-Simulacrum.`
The last crater run encountered a low number (44) of mainly avoidable issues, like small incompatibilities, user errors, and a difference between the two linkers about which default to use with `--gc-sections`. [Here's the triage report](https://hackmd.io/OAJxlxc6Te6YUot9ftYSKQ?view), categorizing the issues, with some analyses and workarounds. I'd appreciate another set of eyes looking at these results.
The changes in this PR have been test-driven for CI changes, try builds with tests enabled, rustc-perf with bootstrapping, in PR #113382.
For infra, about the CI change: this PR forces `rust.lld` to false on vanilla LLVM builders, just to make sure we have coverage without `rust-lld`. Though to be clear, just using an external LLVM is already enough to keep `rust.lld` to false, in turn reverting everything to using the system's default linker.
cc `@rust-lang/bootstrap` for the bootstrap and config change
cc `@petrochenkov` for the small compiler change
cc `@rust-lang/wg-compiler-performance`
The blog post announcing the change, that we expect to merge around the same time as we merge this PR, is open [on the blog repo](https://github.com/rust-lang/blog.rust-lang.org/pull/1319).
Bootstrap change history: this PR changes the default of a config option on `x86_64-unknown-linux-gnu`. It's, however, not expected to cause issues, or require any changes to existing configurations. It's a big enough change that people should at least know about it, in case it causes unexpected problems. If that happens, set `rust.lld = false` in your `config.toml` (and open an issue).
the `rust.lld` config enables rustc's `CFG_USE_SELF_CONTAINED_LINKER` env var, and we:
- set the linker-flavor to use lld
- enable the self-contained linker
this makes the target use the rust-lld linker by default
Fix assertion when attempting to convert `f16` and `f128` with `as`
These types are currently rejected for `as` casts by the compiler. Remove this incorrect check and add codegen tests for all conversions involving these types.
These types are currently rejected for `as` casts by the compiler.
Remove this incorrect check and add codegen tests for all conversions
involving these types.
Rename `${length()}` to `${len()}`
Implements the rename suggested in https://github.com/rust-lang/rust/pull/122808#issuecomment-2047722187
> I brought this up in the doc PR but it belongs here – `length` should probably be renamed `len` before stabilization. The latter is de facto standard in the standard library, whereas the former is only used in a single unstable API. These metafunctions aren’t library items of course, but should presumably still be consistent with established names.
r? `@c410-f3r`
Small improvements to the documentaion of FnAbi
I have updated the documentation of `FnAbi`.
The `arg` and `ret` fields are no longer LLVM types, but Rust types(`ArgAbi` contains a `TyAndLayout` and a `PassMode`), so I changed the documentation to reflect that.
Besides that, I also added documentation to other fields, and added a clarification about the differences between `FnAbi` and `FnSig`, since this is not something that is immediately obvious.
Most combinations of LLVM sanitizers are legal-enough to enable
simultaneously. This change will allow simultaneously enabling ASAN and
shadow call stacks on supported platforms.
MIR operators: clarify Shl/Shr handling of negative offsets
"made unsigned" was not fully clear (made unsigned how? by using `abs`? no), so let's say "re-interpreted as an unsigned value of the same size" instead.
r? `@scottmcm`
Fix the dedup error because of spans from suggestion
Fixes#116502
I believe this kind of issue is supposed resolved by #118057, but the `==` in `span` respect syntax context, here we should only care that they point to the same bytes of source text, so should use `source_equal`.
coverage: `CoverageIdsInfo::mcdc_bitmap_bytes` is never needed
This code for recalculating `mcdc_bitmap_bytes` in a query doesn't provide any benefit, because its result won't have changed from the value in `FunctionCoverageInfo` that was computed during the MIR instrumentation pass.
Extracted from #124571, to avoid having this held up by unrelated issues with condition count checks.
`@rustbot` label +A-code-coverage
Also expand weak alias tys inside consts inside `expand_weak_alias_tys`
Ever since #121344 has been merged, I couldn't let go of the fear that I might've slipped a tiny bug into rustc (:P).
Checking the type flags of the `Const` is strictly more correct than only checking the ones of the `Const`'s `Ty`. I don't think it's possible to trigger an ICE rn (i.e., one of the two `bug!("unexpected weak alias type")` I added in branches where `expand_weak_alias_tys` should've expanded *all* weak alias tys) because presently const exprs aren't allowed to capture late-bound vars. To be future-proof however, we should iron this out.
A possible reproducer would be the following if I'm not mistaken (currently fails to compile due to the aforementioned restriction):
```rs
#![feature(lazy_type_alias, adt_const_params, generic_const_exprs)]
type F = for<'a> fn(A<{ S::<Weak<'a>>(loop {}) }>) -> &'a ();
type A<const N: S<Weak<'static>>> = ();
#[derive(PartialEq, Eq, std::marker::ConstParamTy)]
struct S<T>(T);
type Weak<'a> = &'a ();
```
Whether a late-bound region should actually be considered constrained by a const expr is a separate question — one which we don't need to answer until / unless we actually allow them in such contexts (probable answer: only inside the return exprs of a block but not inside the stmts).
r? oli-obk (he's not available rn but that's fine) or types or compiler
Rollup of 7 pull requests
Successful merges:
- #119838 (style-guide: When breaking binops handle multi-line first operand better)
- #124844 (Use a proper probe for shadowing impl)
- #125047 (Migrate `run-make/issue-14500` to new `rmake.rs` format)
- #125080 (only find segs chain for missing methods when no available candidates)
- #125088 (Uplift `AliasTy` and `AliasTerm`)
- #125100 (Don't do post-method-probe error reporting steps if we're in a suggestion)
- #125118 (Use new utility functions/methods in run-make tests)
r? `@ghost`
`@rustbot` modify labels: rollup
Don't do post-method-probe error reporting steps if we're in a suggestion
Currently in method probing, if we fail to pick a method, then we reset and try to collect relevant candidates for method errors:
34582118af/compiler/rustc_hir_typeck/src/method/probe.rs (L953-L993)
However, we do method lookups via `lookup_method_for_diagnostic` and only care about the result if the method probe was a *success*.
Namely, we don't need to do a bunch of other lookups on failure, since we throw away these results anyways, such as an expensive call to:
34582118af/compiler/rustc_hir_typeck/src/method/probe.rs (L959)
And:
34582118af/compiler/rustc_hir_typeck/src/method/probe.rs (L985)
---
This PR also renames some methods so it's clear that they're for diagnostics.
r? `@nnethercote`
only find segs chain for missing methods when no available candidates
Fixes#124946
This PR includes two changes:
- Extracting the lookup for the missing method in chains into a single function.
- Calling this function only when there are no candidates available.
Add x86_64-unknown-linux-none target
Adds a freestanding linux binary with no libc dependency. This is useful for writing programs written only in rust. It is also essential for writing low level stuff like libc or a dynamic linker.
Tier 3 policy:
>A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
I will be the designed maintainer for this target
>Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
The target triple is consistent with other targets
>Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
If possible, use only letters, numbers, dashes and underscores for the name. Periods (.) are known to cause issues in Cargo.
There is no confusion with other targets since it explicitly adds "none" at the end instead of omitting the environment
>Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
The target does not introduce any unusual requirement
>The target must not introduce license incompatibilities.
There are no license incompatibilities
> Anything added to the Rust repository must be under the standard Rust license (MIT OR Apache-2.0).
Everything added is under that license
>The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the tidy tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
There are no new dependencies
>Compiling, linking, and emitting functional binaries, libraries, or other code for the target (whether hosted on the target itself or cross-compiling from another target) must not depend on proprietary (non-FOSS) libraries. Host tools built for the target itself may depend on the ordinary runtime libraries supplied by the platform and commonly used by other applications built for the target, but those libraries must not be required for code generation for the target; cross-compilation to the target must not require such libraries at all. For instance, rustc built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
There is no proprietary dependencies
>"onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are not limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
No such terms exist for this target
>Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
>This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
Understood
>Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (core for most targets, alloc for targets that can support dynamic memory allocation, std for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
The target already implements core. It might be possible in the future to add support for alloc and std by leveraging crates such as [origin](https://github.com/sunfishcode/origin/) and [rustix](https://github.com/bytecodealliance/rustix)
> The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running binaries, or running tests (even if they do not pass), the documentation must explain how to run such binaries or tests for the target, using emulation if possible or dedicated hardware if necessary.
I believe the proper docs are added
>Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via `@)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
> Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
Understood
> Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
> In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
No other targets are effected
>Tier 3 targets must be able to produce assembly using at least one of rustc's supported backends from any host target.
The same backends used by other linux targets work without issues
Warn against changes in opaque lifetime captures in 2024
Adds a (mostly[^1]) machine-applicable lint `IMPL_TRAIT_OVERCAPTURES` which detects cases where we will capture more lifetimes in edition 2024 than in edition <= 2021, which may lead to erroneous borrowck errors.
This lint is gated behind the `precise_capturing` feature gate and marked `Allow` for now.
[^1]: Except when there are APITs -- I may work on that soon
r? oli-obk
These comments appear to be inspired by the similar comments on
`CounterIncrement` and `ExpressionUsed`. But those comments refer to specific
simplification steps performed during coverage codegen, and there is no
corresponding step for the MC/DC coverage statements.
If these statements do not survive optimization, they will simply not
participate in code generation, just like any other statement.
This code for recalculating `mcdc_bitmap_bytes` doesn't provide any benefit,
because its result won't have changed from the value in `FunctionCoverageInfo`
that was computed during the MIR instrumentation pass.
Some of these cases currently don't occur in practice, but are included for
completeness, and to avoid having to add them later as branch coverage and
MC/DC coverage start building more complex expressions.
Rollup of 4 pull requests
Successful merges:
- #116675 ([ptr] Document maximum allocation size)
- #124997 (Fix ICE while casting a type with error)
- #125072 (Add test for dynamic dispatch + Pin::new soundness)
- #125090 (Migrate fuchsia docs from `pm` to `ffx`)
r? `@ghost`
`@rustbot` modify labels: rollup
Remove `NtIdent` and `NtLifetime`
This is one part of the bigger "remove `Nonterminal` and `TokenKind::Interpolated`" change drafted in #114647. More details in the individual commit messages.
r? `@petrochenkov`
Split out `ty::AliasTerm` from `ty::AliasTy`
Splitting out `AliasTerm` (for use in project and normalizes goals) and `AliasTy` (for use in `ty::Alias`)
r? lcnr
The extra span is now recorded in the new `TokenKind::NtIdent` and
`TokenKind::NtLifetime`. These both consist of a single token, and so
there's no operator precedence problems with inserting them directly
into the token stream.
The other way to do this would be to wrap the ident/lifetime in invisible
delimiters, but there's a lot of code that assumes an interpolated
ident/lifetime fits in a single token, and changing all that code to work with
invisible delimiters would have been a pain. (Maybe it could be done in a
follow-up.)
This change might not seem like much of a win, but it's a first step toward the
much bigger and long-desired removal of `Nonterminal` and
`TokenKind::Interpolated`. That change is big and complex enough that it's
worth doing this piece separately. (Indeed, this commit is based on part of a
late commit in #114647, a prior attempt at that big and complex change.)
This commit adds a new nonterminal `expr_2021` in macro patterns, and
`expr_fragment_specifier_2024` feature flag. For now, `expr` and
`expr_2021` are treated the same, but in future PRs we will update
`expr` to match to new grammar.
Co-authored-by: Vincezo Palazzo <vincenzopalazzodev@gmail.com>
Subtree sync for rustc_codegen_cranelift
A variety of bug fixes, added support for naked functions, a couple more vendor intrinsics implemented.
r? `@ghost`
`@rustbot` label +A-codegen +A-cranelift +T-compiler
Unify `Rvalue::Aggregate` paths in cg_ssa
In #123840 and #123886 I added two different codepaths for `Rvalue::Aggregate` in `cg_ssa`.
This merges them into one, since raw pointers are also immediates that can be built from the immediates of their "fields".
Avoid clone in `Comments::next`
`Comments::next`, in `rustc_ast_pretty`, has this comment:
```
// FIXME: This shouldn't probably clone lmao
```
The obvious thing to try is to return `Option<&Comment>` instead of `Option<Comment>`. But that leads to multiple borrows all over the place, because `Comments` must be borrowed from `PrintState` and then processed by `&mut self` methods within `PrintState`.
This PR instead rearranges things so that comments are consumed as they are used, preserving the `Option<Comment>` return type without requiring any cloning.
r? `@compiler-errors`
This span records the declaration of the metavariable in the LHS of the macro.
It's used in a couple of error messages. Unfortunately, it gets in the way of
the long-term goal of removing `TokenKind::Interpolated`. So this commit
removes it, which degrades a couple of (obscure) error messages but makes
things simpler and enables the next commit.
Remove `#[macro_use] extern crate rustc middle` from numerous crates
Because explicit importing of macros via `use` items is nicer (more standard and readable) than implicit importing via `#[macro_use]`. This PR mops up some cases I didn't get to in #124511.
r? `@saethlin`
The current way of stepping through each comment in `Comments` is a bit
weird. There is a `Vec<Comments>` and a `current` index, which is fine.
The `Comments::next` method clones the current comment but doesn't
advance `current`; the advancing instead happens in `print_comment`,
which is where each cloned comment is actually finally used (or not, in
some cases, if the comment fails to satisfy a predicate).
This commit makes things more iterator-like:
- `Comments::next` now advances `current` instead of `print_comment`.
- `Comments::peek` is added so you can inspect a comment and check a
predicate without consuming it.
- This requires splitting `PrintState::comments` into immutable and
mutable versions. The commit also moves the ref inside the `Option` of
the return type, to save callers from having to use `as_ref`/`as_mut`.
- It also requires adding `PrintState::peek_comment` alongside the
existing `PrintState::next_comment`. (The lifetimes in the signature
of `peek_comment` ended up more complex than I expected.)
We now have a neat separation between consuming (`next`) and
non-consuming (`peek`) uses of each comment. As well as being clearer,
this will facilitate the next commit that avoids unnecessary cloning.
Pretty-print let-else with added parenthesization when needed
Rustc used to produce invalid syntax for the following code, which is problematic because it means we cannot apply rustfmt to the output of `-Zunpretty=expanded`.
```rust
macro_rules! expr {
($e:expr) => { $e };
}
fn main() {
let _ = expr!(loop {}) else { return; };
}
```
```console
$ rustc repro.rs -Zunpretty=expanded | rustfmt
error: `loop...else` loops are not supported
--> <stdin>:9:29
|
9 | fn main() { let _ = loop {} else { return; }; }
| ---- ^^^^^^^^^^^^^^^^
| |
| `else` is attached to this loop
|
= note: consider moving this `else` clause to a separate `if` statement and use a `bool` variable to control if it should run
```
Unfortunately, we can't always offer a machine-applicable suggestion when there are subpatterns from macro expansion.
Co-Authored-By: Guillaume Boisseau <Nadrieril@users.noreply.github.com>
solve: all "non-structural" logging to trace
This enables us to start with `RUSTC_LOG=rustc_trait_selection::solve=debug` to figure out *where* something went wrong, to then separately use `trace` to get to the details.
r? ``@compiler-errors``
Fix, document, and test parser and pretty-printer edge cases related to braced macro calls
_Review note: this is a deceptively small PR because it comes with 145 lines of docs and 196 lines of tests, and only 25 lines of compiler code changed. However, I recommend reviewing it 1 commit at a time because much of the effect of the code changes is non-local i.e. affecting code that is not visible in the final state of the PR. I have paid attention that reviewing the PR one commit at a time is as easy as I can make it. All of the code you need to know about is touched in those commits, even if some of those changes disappear by the end of the stack._
This is a follow-up to https://github.com/rust-lang/rust/pull/119105. One case that is not relevant to `-Zunpretty=expanded`, but which came up as I'm porting #119105 and #118726 into `syn`'s printer and `prettyplease`'s printer where it **is** relevant, and is also relevant to rustc's `stringify!`, is statement boundaries in the vicinity of braced macro calls.
Rustc's AST pretty-printer produces invalid syntax for statements that begin with a braced macro call:
```rust
macro_rules! stringify_item {
($i:item) => {
stringify!($i)
};
}
macro_rules! repro {
($e:expr) => {
stringify_item!(fn main() { $e + 1; })
};
}
fn main() {
println!("{}", repro!(m! {}));
}
```
**Before this PR:** output is not valid Rust syntax.
```console
fn main() { m! {} + 1; }
```
```console
error: leading `+` is not supported
--> <anon>:1:19
|
1 | fn main() { m! {} + 1; }
| ^ unexpected `+`
|
help: try removing the `+`
|
1 - fn main() { m! {} + 1; }
1 + fn main() { m! {} 1; }
|
```
**After this PR:** valid syntax.
```console
fn main() { (m! {}) + 1; }
```
Uplift various `*Predicate` types into `rustc_type_ir`
Uplifts `ProjectionPredicate`, `ExistentialTraitRef`, `ExistentialProjection`, `TraitPredicate`, `NormalizesTo`, `CoercePredicate`, and `SubtypePredicate`.
Adds `rustc_type_ir_macros`, which semi-duplicates the derive for `TypeVisitable`, `TypeFoldable`, and `Lift`, but in a way that is interner-agnostic.
Moves `rustc_type_ir::trait_ref` to `rustc_type_ir::predicate`. The specific placement of all these structs doesn't matter b/c of glob imports, tho.
Refactoring after the `PlaceValue` addition
I added [`PlaceValue`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_codegen_ssa/mir/place/struct.PlaceValue.html) in #123775, but kept that one line-by-line simple because it touched so many places.
This goes through to add more helpers & docs, and change some `PlaceRef` to `PlaceValue` where the type didn't need to be included.
No behaviour changes -- the codegen is exactly the same.
It is impossible for expr here to be a braced macro call. Expr comes
from `parse_stmt_without_recovery`, in which macro calls are parsed by
`parse_stmt_mac`. See this part:
let kind = if (style == MacStmtStyle::Braces
&& self.token != token::Dot
&& self.token != token::Question)
|| self.token == token::Semi
|| self.token == token::Eof
{
StmtKind::MacCall(P(MacCallStmt { mac, style, attrs, tokens: None }))
} else {
// Since none of the above applied, this is an expression statement macro.
let e = self.mk_expr(lo.to(hi), ExprKind::MacCall(mac));
let e = self.maybe_recover_from_bad_qpath(e)?;
let e = self.parse_expr_dot_or_call_with(e, lo, attrs)?;
let e = self.parse_expr_assoc_with(
0,
LhsExpr::AlreadyParsed { expr: e, starts_statement: false },
)?;
StmtKind::Expr(e)
};
A braced macro call at the head of a statement is always either extended
into ExprKind::Field / MethodCall / Await / Try / Binary, or else
returned as StmtKind::MacCall. We can never get a StmtKind::Expr
containing ExprKind::MacCall containing brace delimiter.
The change to the test is a little goofy because the compiler was
guessing "correctly" before that `falsy! {}` is the condition as opposed
to the else body. But I believe this change is fundamentally correct.
Braced macro invocations in statement position are most often item-like
(`thread_local! {...}`) as opposed to parenthesized macro invocations
which are condition-like (`cfg!(...)`).
I didn't figure out how to reach this condition with `expr` containing
`ExprKind::MacCall`. All the approaches I tried ended up with the macro
call ending up in the `StmtKind::MacCall` case below instead.
In any case, from visual inspection this is a bugfix. If we do end up
with a `StmtKind::Expr` containing `ExprKind::MacCall` with brace
delimiter, it would not need ";" printed after it.
This commit by itself is supposed to have no effect on behavior. All of
the call sites are updated to preserve their previous behavior.
The behavior changes are in the commits that follow.
For each of these, we need to decide whether they need to be using
`expr_requires_semi_to_be_stmt`, or `expr_requires_comma_to_be_match_arm`,
which are supposed to be 2 different behaviors. Previously they were
conflated into one, causing either too much or too little
parenthesization.
Refactor Apple `target_abi`
This was bundled together with `Arch`, which complicated a few code paths and meant we had to do more string matching than necessary.
CC `@BlackHoleFox` as you've worked on the Apple target spec before
Related: Is there a reason why `Target`/`TargetOptions` use `StaticCow` for so many things, instead of an enum with defined values (and perhaps a catch-all case for custom target json files)? Tagging `@Nilstrieb,` as you might know?
Update ena to 0.14.3
Includes https://github.com/rust-lang/ena/pull/53, which removes a trivial `Self: Sized` bound that prevents `ena` from building on the new solver.
I added `PlaceValue` in 123775, but kept that one line-by-line simple because it touched so many places.
This goes through to add more helpers & docs, and change some `PlaceRef` to `PlaceValue` where the type didn't need to be included.
No behaviour changes.
Rollup of 5 pull requests
Successful merges:
- #124233 (Add `-lmingwex` second time in `mingw_libs`)
- #124318 (ignore generics args in attribute paths)
- #124899 (bootstrap: add comments for the automatic dry run)
- #124904 (reachable computation: extend explanation of what this does, and why)
- #124930 (Make sure we consume a generic arg when checking mistyped turbofish)
r? `@ghost`
`@rustbot` modify labels: rollup
Make sure we consume a generic arg when checking mistyped turbofish
When recovering un-turbofish-ed args in expr position (e.g. `let x = a<T, U>();` in `check_mistyped_turbofish_with_multiple_type_params`, we used `parse_seq_to_before_end` to parse the fake generic args; however, it used `parse_generic_arg` which *optionally* parses a generic arg. If it doesn't end up parsing an arg, it returns `Ok(None)` and consumes no tokens. If we don't find a delimiter after this (`,`), we try parsing *another* element. In this case, we just infinitely loop looking for a subsequent element.
We can fix this by making sure that we either parse a generic arg or error in `parse_seq_to_before_end`'s callback.
Fixes#124897
reachable computation: extend explanation of what this does, and why
Follow-up to https://github.com/rust-lang/rust/pull/122769. I had the time to think about this some more, in particular in the context of https://github.com/rust-lang/rust/issues/119214, so I felt it was worth extending these comments some more.
I also gave up on the context of "externally reachable" as it is not called that way anywhere else in the compiler.
Cc `@tmiasko` `@saethlin`
ignore generics args in attribute paths
Fixes#97006Fixes#123911Fixes#123912
This patch ensures that we no longer have to handle invalid generic arguments in attribute paths.
r? `@petrochenkov`
Add `-lmingwex` second time in `mingw_libs`
Upcoming mingw-w64 releases will contain small math functions refactor which moved implementation around. As a result functions like `lgamma`
now depend on libraries in this order:
`libmingwex.a` -> `libmsvcrt.a` -> `libmingwex.a`.
Fixes#124221
Avoid `alloca`s in codegen for simple `mir::Aggregate` statements
The core idea here is to remove the abstraction penalty of simple newtypes in codegen.
Even something simple like constructing a
```rust
#[repr(transparent)] struct Foo(u32);
```
forces an `alloca` to be generated in nightly right now.
Certainly LLVM can optimize that away, but it would be nice if it didn't have to.
Quick example:
```rust
#[repr(transparent)]
pub struct Transparent32(u32);
#[no_mangle]
pub fn make_transparent(x: u32) -> Transparent32 {
let a = Transparent32(x);
a
}
```
on nightly we produce <https://rust.godbolt.org/z/zcvoM79ae>
```llvm
define noundef i32 `@make_transparent(i32` noundef %x) unnamed_addr #0 {
%a = alloca i32, align 4
store i32 %x, ptr %a, align 4
%0 = load i32, ptr %a, align 4, !noundef !3
ret i32 %0
}
```
but after this PR we produce
```llvm
define noundef i32 `@make_transparent(i32` noundef %x) unnamed_addr #0 {
start:
ret i32 %x
}
```
(even before the optimizer runs).
Rename some `FulfillmentErrorCode`/`ObligationCauseCode` variants to be less redundant
1. Rename some `FulfillmentErrorCode` variants.
2. Always use `ObligationCauseCode::` to prefix a code, rather than using a glob import and naming them through `traits::`.
3. Rename some `ObligationCauseCode` variants -- I wasn't particularly thorough with thinking of a new names for these, so could workshop them if necessary.
4. Misc stuff from renaming.
r? lcnr
Rollup of 5 pull requests
Successful merges:
- #124615 (coverage: Further simplify extraction of mapping info from MIR)
- #124778 (Fix parse error message for meta items)
- #124797 (Refactor float `Primitive`s to a separate `Float` type)
- #124888 (Migrate `run-make/rustdoc-output-path` to rmake)
- #124957 (Make `Ty::builtin_deref` just return a `Ty`)
r? `@ghost`
`@rustbot` modify labels: rollup
Refactor float `Primitive`s to a separate `Float` type
Now there are 4 of them, it makes sense to refactor `F16`, `F32`, `F64` and `F128` out of `Primitive` and into a separate `Float` type (like integers already are). This allows patterns like `F16 | F32 | F64 | F128` to be simplified into `Float(_)`, and is consistent with `ty::FloatTy`.
As a side effect, this PR also makes the `Ty::primitive_size` method work with `f16` and `f128`.
Tracking issue: #116909
`@rustbot` label +F-f16_and_f128
Fix parse error message for meta items
Addresses https://github.com/rust-lang/rust/issues/122796#issuecomment-2010803906, cc [``@]Thomasdezeeuw.``
For attrs inside of a macro like `#[doc(alias = $ident)]` or `#[cfg(feature = $ident)]` where `$ident` is a macro metavariable of fragment kind `ident`, we used to say the following when expanded (with `$ident` ⟼ `ident`):
```
error: expected unsuffixed literal or identifier, found `ident`
--> weird.rs:6:19
|
6 | #[cfg(feature = $ident)]
| ^^^^^^
...
11 | m!(id);
| ------ in this macro invocation
|
= note: this error originates in the macro `m` (in Nightly builds, run with -Z macro-backtrace for more info)
```
This was incorrect and caused confusion, justifiably so (see #122796).
In this position, we only accept/expect *unsuffixed literals* which consist of numeric & string literals as well as the boolean literals / the keywords / the reserved identifiers `false` & `true` **but not** arbitrary identifiers.
Furthermore, we used to suggest garbage when encountering unexpected non-identifier tokens:
```
error: expected unsuffixed literal, found `-`
--> weird.rs:16:17
|
16 | #[cfg(feature = -1)]
| ^
|
help: surround the identifier with quotation marks to parse it as a string
|
16 | #[cfg(feature =" "-1)]
| + +
```
Now we no longer do.
coverage: Further simplify extraction of mapping info from MIR
This is another round of rearrangement and simplification that builds on top of the changes made to mapping-extraction by #124603.
The overall theme is to take the computation of `bcb_has_mappings` and `test_vector_bitmap_bytes` out of the main body of `generate_coverage_spans`, which then lets us perform a few other small changes that had previously been held up by the need to work around those computations.
codegen: memmove/memset cannot be non-temporal
non-temporal memset is not a thing.
And for memmove, since the LLVM backend doesn't support this, surely we don't need it in the GCC backend.
Some minor (English only) heroics are performed to print error messages
like "5th rule of macro `m` is never used". The form "rule #5 of macro
`m` is never used" is just as good and much simpler to implement.
Eliminate some `FIXME(lcnr)` comments
In some cases this involved changing code. In some cases the comment was able to removed or replaced.
r? ``@lcnr``
Rename `Generics::params` to `Generics::own_params`
I hope this makes it slightly more obvious that `generics.own_params` is insufficient when considering nested items. I didn't actually audit any of the usages, for the record.
r? lcnr
`InferCtxt::next_{ty,const}_var*` all take an origin, but the
`param_def_id` is almost always `None`. This commit changes them to just
take a `Span` and build the origin within the method, and adds new
methods for the rare cases where `param_def_id` might not be `None`.
This avoids a lot of tedious origin building.
Specifically:
- next_ty_var{,_id_in_universe,_in_universe}: now take `Span` instead of
`TypeVariableOrigin`
- next_ty_var_with_origin: added
- next_const_var{,_in_universe}: takes Span instead of ConstVariableOrigin
- next_const_var_with_origin: added
- next_region_var, next_region_var_in_universe: these are unchanged,
still take RegionVariableOrigin
The API inconsistency (ty/const vs region) seems worth it for the
large conciseness improvements.
`InferCtxt::next_{ty,const,int,float}_var_id` each have a single call
site, in `InferCtt::next_{ty,const,int,float}_var` respectively.
The only remaining method that creates a var_id is
`InferCtxt::next_ty_var_id_in_universe`, which has one use outside the
crate.
Make `#![feature]` suggestion MaybeIncorrect
Fixes https://github.com/rust-lang/rust-clippy/issues/12784
The `unstable_name_collisions` lint uses `disabled_nightly_features` to mention the feature name, but accepting the suggestion would result in an ambiguity error
There are other calls where accepting the feature gate would fix code when ran with `cargo fix --broken-code`, though it's not always desirable to add a feature gate even if the user is currently on nightly so MaybeIncorrect seems appropriate
Add `ErrorGuaranteed` to `Recovered::Yes` and use it more.
The starting point for this was identical comments on two different fields, in `ast::VariantData::Struct` and `hir::VariantData::Struct`:
```
// FIXME: investigate making this a `Option<ErrorGuaranteed>`
recovered: bool
```
I tried that, and then found that I needed to add an `ErrorGuaranteed` to `Recovered::Yes`. Then I ended up using `Recovered` instead of `Option<ErrorGuaranteed>` for these two places and elsewhere, which required moving `ErrorGuaranteed` from `rustc_parse` to `rustc_ast`.
This makes things more consistent, because `Recovered` is used in more places, and there are fewer uses of `bool` and
`Option<ErrorGuaranteed>`. And safer, because it's difficult/impossible to set `recovered` to `Recovered::Yes` without having emitted an error.
r? `@oli-obk`
Fix#124819, where a if-less block causes a wrong output. It is
caused by get_return_block in get_fn_decl. In get_return_block,
when a else-less if expression is the tail expression, the check
for next_node will keep iterating. So it is necessary to make a
early return in the check.