The set of types which can have an inherent impl changed slightly and rustdoc
just needed to catch up to understand what it means to see a `impl str`!
Closes#23511
All methods listed in "Trait Implementations" now hyperlink to the source trait
instead of themselves, allowing easy browsing of the documentation of a trait
method.
Closes#17476
This ensures that all external traits are run through the same filters that the
rest of the AST goes through, stripping hidden function as necessary.
Closes#13698
This isn't really possible to test in an automatic way, since the only traits
you can negative impl are `Send` and `Sync`, and the implementors page for
those only exists in libstd.
Closes#21310
This isn't really possible to test in an automatic way, since the only traits
you can negative impl are `Send` and `Sync`, and the implementors page for
those only exists in libstd.
Closes#21310
Previously, impls for `[T; n]` were collected in the same place as impls for `[T]` and `&[T]`. This splits them out into their own primitive page in both core and std.
This is a [breaking-change]. When indexing a generic map (hashmap, etc) using the `[]` operator, it is now necessary to borrow explicitly, so change `map[key]` to `map[&key]` (consistent with the `get` routine). However, indexing of string-valued maps with constant strings can now be written `map["abc"]`.
r? @japaric
cc @aturon @Gankro
This commit:
* Introduces `std::convert`, providing an implementation of
RFC 529.
* Deprecates the `AsPath`, `AsOsStr`, and `IntoBytes` traits, all
in favor of the corresponding generic conversion traits.
Consequently, various IO APIs now take `AsRef<Path>` rather than
`AsPath`, and so on. Since the types provided by `std` implement both
traits, this should cause relatively little breakage.
* Deprecates many `from_foo` constructors in favor of `from`.
* Changes `PathBuf::new` to take no argument (creating an empty buffer,
as per convention). The previous behavior is now available as
`PathBuf::from`.
* De-stabilizes `IntoCow`. It's not clear whether we need this separate trait.
Closes#22751Closes#14433
[breaking-change]
Impls on `clean::Type::FixedVector` are now collected in the array
primitive page instead of the slice primitive page.
Also add a primitive docs for arrays to `std`.
* rustdoc was doubly appending the file name to the path of where to
generate the source files, meanwhile, the [src] hyperlinks were not
* Added a flag to rustdoc::html::render::clean_srcpath to ignore the
last path component, i.e. the file name itself to prevent the issue
* This also avoids creating directories with the same name as source
files, and it makes sure the link to `main.css` is correct as well.
* Added regression tests to ensure the rustdoc heirarchy of rendered
source files remains consistent
Fixes#23192
Previously it would fail on a trivial case like
/// Summary line
/// <trailing space>
/// Regular content
Compliant markdown preprocessor would render that as two separate paragraphs, but our summary line
extractor interprets both lines as the same paragraph and includes both into the short summary resulting in

This adds search by type (for functions/methods) support to Rustdoc. Target issue is at https://github.com/rust-lang/rfcs/issues/658.
I've described my approach here: https://github.com/rust-lang/rfcs/issues/658#issuecomment-76484200. I'll copy the text in here as well:
---
Hi, it took me longer than I wished, but I have implemented this in a not-too-complex way that I think can be extended to support more complex features (like the ones mentioned [here](https://github.com/rust-lang/rust/issues/12866#issuecomment-66945317)).
The idea is to generate a JSON representation of the types of methods/functions in the existing index, and then make the JS understand when it should look by type (and not by name).
I tried to come up with a JSON representation that can be extended to support generics, bounds, ref/mut annotations and so on. Here are a few samples:
Function:
```rust
fn to_uppercase(c: char) -> char
```
```json
{
"inputs": [
{"name": "char"}
],
"output": {
"name": "char",
}
}
```
Method (implemented or defined in trait):
```rust
// in struct Vec
// self is considered an argument as well
fn capacity(&self) -> usize
```
```json
{
"inputs": [
{"name": "vec"}
],
"output": {
"name": "usize"
}
}
```
This simple format can be extended by adding more fields, like `generic: bool`, a `bounds` mapping and so on.
I have a working implementation in https://github.com/rust-lang/rust/compare/master...mihneadb:rustdoc-search-by-type. You can check out a live demo [here](http://data.mihneadb.net/doc/std/index.html?search=charext%20-%3E%20char).

The feature list is not that long:
- search by types (you *can* use generics as well, as long as you use the exact name - e.g. [`vec,t -> `](http://data.mihneadb.net/doc/std/index.html?search=vec%2C%20t%20-%3E))
- order of arguments does not matter
- `self` is took into account as well (e.g. search for `vec -> usize`)
- does not use "complex" annotations (e.g. you don't search for `&char -> char` but for `char -> char`)
My goal is to get a working, minimal "base" merged so that others can build upon it. How should I proceed? Do I open a PR (badly in need of code review since this is my first non "hello world"-ish rust code)?
---
Previously it would fail on a trivial case like
/// Summary line
/// <trailing space>
/// Regular content
Compliant markdown preprocessor would render that as two separate paragraphs, but our summary line
extractor would interpret both lines as the same paragraph and include both into the short summary.
We require the *deferred* loading, not just an opportunistic
asynchronous loading. I think `<script defer>` is safe to use,
according to <http://caniuse.com/#feat=script-defer>.
It had been a source of huge bloat in rustdoc outputs. Of course, we can simply disable compiler docs (as `rustc` generates over 90M of HTML) but this approach fares better even after such decision.
Each directory now has `sidebar-items.js`, which immediately calls `initSidebarItems` with a JSON sidebar data. This file is shared throughout every item in the sidebar. The current item is highlighted via a separate JS snippet (`window.sidebarCurrent`). The JS file is designed to be loaded asynchronously, as the sidebar is rendered before the content and slow sidebar loading blocks the entire rendering. For the minimal accessibility without JS, links to the parent items are left in HTML.
In the future, it might also be possible to integrate crates data with the same fashion: `sidebar-items.js` at the root path will do that. (Currently rustdoc skips writing JS in that case.)
This has a huge impact on the size of rustdoc outputs. Originally it was 326MB uncompressed (37.7MB gzipped, 6.1MB xz compressed); it is 169MB uncompressed (11.9MB gzipped, 5.9MB xz compressed) now. The sidebar JS only takes 10MB uncompressed & 0.3MB gzipped.
The two main sub-modules, `c_str` and `os_str`, have now had some time to bake
in the standard library. This commits performs a sweep over the modules adding
various stability tags.
The following APIs are now marked `#[stable]`
* `OsString`
* `OsStr`
* `OsString::from_string`
* `OsString::from_str`
* `OsString::new`
* `OsString::into_string`
* `OsString::push` (renamed from `push_os_str`, added an `AsOsStr` bound)
* various trait implementations for `OsString`
* `OsStr::from_str`
* `OsStr::to_str`
* `OsStr::to_string_lossy`
* `OsStr::to_os_string`
* various trait implementations for `OsStr`
* `CString`
* `CStr`
* `NulError`
* `CString::new` - this API's implementation may change as a result of
rust-lang/rfcs#912 but the usage of `CString::new(thing)` looks like it is
unlikely to change. Additionally, the `IntoBytes` bound is also likely to
change but the set of implementors for the trait will not change (despite the
trait perhaps being renamed).
* `CString::from_vec_unchecked`
* `CString::as_bytes`
* `CString::as_bytes_with_nul`
* `NulError::nul_position`
* `NulError::into_vec`
* `CStr::from_ptr`
* `CStr::as_ptr`
* `CStr::to_bytes`
* `CStr::to_bytes_with_nul`
* various trait implementations for `CStr`
The following APIs remain `#[unstable]`
* `OsStr*Ext` traits remain unstable as the organization of `os::platform` is
uncertain still and the traits may change location.
* `AsOsStr` remains unstable as generic conversion traits are likely to be
rethought soon.
The following APIs were deprecated
* `OsString::push_os_str` is now called `push` and takes `T: AsOsStr` instead (a
superset of the previous functionality).
It had been a source of huge bloat in rustdoc outputs. Of course,
we can simply disable compiler docs (as `rustc` generates over 90M
of HTML) but this approach fares better even after such decision.
Each directory now has `sidebar-items.js`, which immediately calls
`initSidebarItems` with a JSON sidebar data. This file is shared
throughout every item in the sidebar. The current item is
highlighted via a separate JS snippet (`window.sidebarCurrent`).
The JS file is designed to be loaded asynchronously, as the sidebar
is rendered before the content and slow sidebar loading blocks
the entire rendering. For the minimal accessibility without JS,
links to the parent items are left in HTML.
In the future, it might also be possible to integrate crates data
with the same fashion: `sidebar-items.js` at the root path will do
that. (Currently rustdoc skips writing JS in that case.)
This has a huge impact on the size of rustdoc outputs. Originally
it was 326MB uncompressed (37.7MB gzipped, 6.1MB xz compressed);
it is 169MB uncompressed (11.9MB gzipped, 5.9MB xz compressed) now.
The sidebar JS only takes 10MB uncompressed & 0.3MB gzipped.
This commit deprecates the majority of std::old_io::fs in favor of std::fs and
its new functionality. Some functions remain non-deprecated but are now behind a
feature gate called `old_fs`. These functions will be deprecated once
suitable replacements have been implemented.
The compiler has been migrated to new `std::fs` and `std::path` APIs where
appropriate as part of this change.
In preparation for upcoming changes to the `Writer` trait (soon to be called
`Write`) this commit renames the current `write` method to `write_all` to match
the semantics of the upcoming `write_all` method. The `write` method will be
repurposed to return a `usize` indicating how much data was written which
differs from the current `write` semantics. In order to head off as much
unintended breakage as possible, the method is being deprecated now in favor of
a new name.
[breaking-change]
This pull request add tooltips to most links of sidebar.
The tooltips display "summary line" of items' document.
Some lengthy/annoying raw markdown code are eliminated, such as links and headers.
- `[Rust](http://rust-lang.org)` displays as `Rust` (no URLs)
- `# header` displays as `header` (no `#`s)
Some inline spans, e.g. ``` `code` ``` and ```*emphasis*```, are kept as they are, for better readable.
I've make sure `&` `'` `"` `<` and `>` are properly displayed in tooltips, for example, `&'a Option<T>`.
Online preview: http://liigo.com/tmp/tooltips/std/index.html
@alexcrichton @steveklabnik since you have reviewed my previous ([v1](https://github.com/rust-lang/rust/pull/13014),[v2](https://github.com/rust-lang/rust/pull/16448)) PRs of this serise, which have been closed for technical reasons. Thank you.
This commit is an implementation of [RFC 565][rfc] which is a stabilization of
the `std::fmt` module and the implementations of various formatting traits.
Specifically, the following changes were performed:
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0565-show-string-guidelines.md
* The `Show` trait is now deprecated, it was renamed to `Debug`
* The `String` trait is now deprecated, it was renamed to `Display`
* Many `Debug` and `Display` implementations were audited in accordance with the
RFC and audited implementations now have the `#[stable]` attribute
* Integers and floats no longer print a suffix
* Smart pointers no longer print details that they are a smart pointer
* Paths with `Debug` are now quoted and escape characters
* The `unwrap` methods on `Result` now require `Display` instead of `Debug`
* The `Error` trait no longer has a `detail` method and now requires that
`Display` must be implemented. With the loss of `String`, this has moved into
libcore.
* `impl<E: Error> FromError<E> for Box<Error>` now exists
* `derive(Show)` has been renamed to `derive(Debug)`. This is not currently
warned about due to warnings being emitted on stage1+
While backwards compatibility is attempted to be maintained with a blanket
implementation of `Display` for the old `String` trait (and the same for
`Show`/`Debug`) this is still a breaking change due to primitives no longer
implementing `String` as well as modifications such as `unwrap` and the `Error`
trait. Most code is fairly straightforward to update with a rename or tweaks of
method calls.
[breaking-change]
Closes#21436
There's been some debate over the precise form that these APIs should take, and
they've undergone some changes recently, so these APIs are going to be left
unstable for now to be fleshed out during the next release cycle.
fmt::Show is for debugging, and can and should be implemented for
all public types. This trait is used with `{:?}` syntax. There still
exists #[derive(Show)].
fmt::String is for types that faithfully be represented as a String.
Because of this, there is no way to derive fmt::String, all
implementations must be purposeful. It is used by the default format
syntax, `{}`.
This will break most instances of `{}`, since that now requires the type
to impl fmt::String. In most cases, replacing `{}` with `{:?}` is the
correct fix. Types that were being printed specifically for users should
receive a fmt::String implementation to fix this.
Part of #20013
[breaking-change]
While talking on IRC, someone wanted to post a link to the Rust source code, but while the lines of the rendered source code do have anchors (`<span id="[line number]">`), there is no convenient way to make links as they are not clickable. This PR makes them clickable.
Also, a minor fix of the FAQ is included.
This commit is an implementation of [RFC 503][rfc] which is a stabilization
story for the prelude. Most of the RFC was directly applied, removing reexports.
Some reexports are kept around, however:
* `range` remains until range syntax has landed to reduce churn.
* `Path` and `GenericPath` remain until path reform lands. This is done to
prevent many imports of `GenericPath` which will soon be removed.
* All `io` traits remain until I/O reform lands so imports can be rewritten all
at once to `std::io::prelude::*`.
This is a breaking change because many prelude reexports have been removed, and
the RFC can be consulted for the exact list of removed reexports, as well as to
find the locations of where to import them.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0503-prelude-stabilization.md
[breaking-change]
Closes#20068
This commit is an implementation of [RFC 526][rfc] which is a change to alter
the definition of the old `fmt::FormatWriter`. The new trait, renamed to
`Writer`, now only exposes one method `write_str` in order to guarantee that all
implementations of the formatting traits can only produce valid Unicode.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0526-fmt-text-writer.md
One of the primary improvements of this patch is the performance of the
`.to_string()` method by avoiding an almost-always redundant UTF-8 check. This
is a breaking change due to the renaming of the trait as well as the loss of the
`write` method, but migration paths should be relatively easy:
* All usage of `write` should move to `write_str`. If truly binary data was
being written in an implementation of `Show`, then it will need to use a
different trait or an altogether different code path.
* All usage of `write!` should continue to work as-is with no modifications.
* All usage of `Show` where implementations just delegate to another should
continue to work as-is.
[breaking-change]
Closes#20352
According to [RFC 344][], methods that return `&[u8]` should have names
ending in `bytes`. Though `include_bin!` is a macro not a method, it
seems reasonable to follow the convention anyway.
We keep the old name around for now, but trigger a deprecation warning
when it is used.
[RFC 344]: https://github.com/rust-lang/rfcs/blob/master/text/0344-conventions-galore.md
[breaking-change]
followed by a semicolon.
This allows code like `vec![1i, 2, 3].len();` to work.
This breaks code that uses macros as statements without putting
semicolons after them, such as:
fn main() {
...
assert!(a == b)
assert!(c == d)
println(...);
}
It also breaks code that uses macros as items without semicolons:
local_data_key!(foo)
fn main() {
println("hello world")
}
Add semicolons to fix this code. Those two examples can be fixed as
follows:
fn main() {
...
assert!(a == b);
assert!(c == d);
println(...);
}
local_data_key!(foo);
fn main() {
println("hello world")
}
RFC #378.
Closes#18635.
[breaking-change]
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.
A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.
For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.
This breaks code like:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
Change this code to:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
impl Copy for Point2D {}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
This is the backwards-incompatible part of #13231.
Part of RFC #3.
[breaking-change]
Otherwise the generated documentation is 30% larger. The sidebar
renders an entry for each item to all items, so large modules have
O(n^2) items rendered in the sidebars. Not a correct solution, but
at least it works.
They are just (unsafe) functions and static items to most users
and even compilers! The metadata doesn't distinguish them, so Rustdoc
ended up producing broken links (generated `ffi.*.html`, links to
`fn.*.html`). It would be best to avoid this pitfall at all.
Before: doc/src/collections/home/lifthrasiir/git/rust/src/libcollections/vec.rs.html
After: doc/src/collections/vec.rs.html
If the source code is in the parent dirs relative to the crate root,
`..` is replaced with `up` as expected. Any other error like non-UTF-8
paths or drive-relative paths falls back to the absolute path.
There might be a way to improve on false negatives, but this alone
should be enough for fixing #18370.
This commit removes the `std::local_data` module in favor of a new
`std::thread_local` module providing thread local storage. The module provides
two variants of TLS: one which owns its contents and one which is based on
scoped references. Each implementation has pros and cons listed in the
documentation.
Both flavors have accessors through a function called `with` which yield a
reference to a closure provided. Both flavors also panic if a reference cannot
be yielded and provide a function to test whether an access would panic or not.
This is an implementation of [RFC 461][rfc] and full details can be found in
that RFC.
This is a breaking change due to the removal of the `std::local_data` module.
All users can migrate to the new thread local system like so:
thread_local!(static FOO: Rc<RefCell<Option<T>>> = Rc::new(RefCell::new(None)))
The old `local_data` module inherently contained the `Rc<RefCell<Option<T>>>` as
an implementation detail which must now be explicitly stated by users.
[rfc]: https://github.com/rust-lang/rfcs/pull/461
[breaking-change]
This PR:
- makes rustdoc colour trait methods like other functions in search results;
- makes rustdoc display `extern crate` statements with the new `as` syntax instead of the old `=` syntax;
- changes rustdoc to list constants and statics in a way that is more similar to functions and modules and show their full definition and documentation on their own page, fixing #19046:


This commit applies the stabilization of std::fmt as outlined in [RFC 380][rfc].
There are a number of breaking changes as a part of this commit which will need
to be handled to migrated old code:
* A number of formatting traits have been removed: String, Bool, Char, Unsigned,
Signed, and Float. It is recommended to instead use Show wherever possible or
to use adaptor structs to implement other methods of formatting.
* The format specifier for Boolean has changed from `t` to `b`.
* The enum `FormatError` has been renamed to `Error` as well as becoming a unit
struct instead of an enum. The `WriteError` variant no longer exists.
* The `format_args_method!` macro has been removed with no replacement. Alter
code to use the `format_args!` macro instead.
* The public fields of a `Formatter` have become read-only with no replacement.
Use a new formatting string to alter the formatting flags in combination with
the `write!` macro. The fields can be accessed through accessor methods on the
`Formatter` structure.
Other than these breaking changes, the contents of std::fmt should now also all
contain stability markers. Most of them are still #[unstable] or #[experimental]
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0380-stabilize-std-fmt.md
[breaking-change]
Closes#18904
The trait has an obvious, sensible implementation directly on vectors so
the MemWriter wrapper is unnecessary. This will halt the trend towards
providing all of the vector methods on MemWriter along with eliminating
the noise caused by conversions between the two types. It also provides
the useful default Writer methods on Vec<u8>.
After the type is removed and code has been migrated, it would make
sense to add a new implementation of MemWriter with seeking support. The
simple use cases can be covered with vectors alone, and ones with the
need for seeks can use a new MemWriter implementation.
This breaks code that referred to variant names in the same namespace as
their enum. Reexport the variants in the old location or alter code to
refer to the new locations:
```
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
=>
```
pub use self::Foo::{A, B};
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
or
```
pub enum Foo {
A,
B
}
fn main() {
let a = Foo::A;
}
```
[breaking-change]
Previously, the stability summary page attempted to associate impl
blocks with the module in which they were defined, rather than the
module defining the type they apply to (which is usually, but not
always, the same). Unfortunately, due to the basic architecture of
rustdoc, this meant that impls from re-exports were not being counted.
This commit makes the stability summary work the same way that rustdoc's
rendered output does: all methods are counted alongside the type they
apply to, no matter where the methods are defined.
In addition, for trait impl blocks only the stability of the overall
block is counted; the stability of the methods within is not
counted (since that stability level is part of the trait definition).
Fixes#18812
* Moves multi-collection files into their own directory, and splits them into seperate files
* Changes exports so that each collection has its own module
* Adds underscores to public modules and filenames to match standard naming conventions
(that is, treemap::{TreeMap, TreeSet} => tree_map::TreeMap, tree_set::TreeSet)
* Renames PriorityQueue to BinaryHeap
* Renames SmallIntMap to VecMap
* Miscellanious fallout fixes
[breaking-change]
- The signature of the `*_equiv` methods of `HashMap` and similar structures
have changed, and now require one less level of indirection. Change your code
from:
```
hashmap.find_equiv(&"Hello");
hashmap.find_equiv(&&[0u8, 1, 2]);
```
to:
```
hashmap.find_equiv("Hello");
hashmap.find_equiv(&[0u8, 1, 2]);
```
- The generic parameter `T` of the `Hasher::hash<T>` method have become
`Sized?`. Downstream code must add `Sized?` to that method in their
implementations. For example:
```
impl Hasher<FnvState> for FnvHasher {
fn hash<T: Hash<FnvState>>(&self, t: &T) -> u64 { /* .. */ }
}
```
must be changed to:
```
impl Hasher<FnvState> for FnvHasher {
fn hash<Sized? T: Hash<FnvState>>(&self, t: &T) -> u64 { /* .. */ }
// ^^^^^^
}
```
[breaking-change]
https://github.com/rust-lang/rfcs/pull/221
The current terminology of "task failure" often causes problems when
writing or speaking about code. You often want to talk about the
possibility of an operation that returns a Result "failing", but cannot
because of the ambiguity with task failure. Instead, you have to speak
of "the failing case" or "when the operation does not succeed" or other
circumlocutions.
Likewise, we use a "Failure" header in rustdoc to describe when
operations may fail the task, but it would often be helpful to separate
out a section describing the "Err-producing" case.
We have been steadily moving away from task failure and toward Result as
an error-handling mechanism, so we should optimize our terminology
accordingly: Result-producing functions should be easy to describe.
To update your code, rename any call to `fail!` to `panic!` instead.
Assuming you have not created your own macro named `panic!`, this
will work on UNIX based systems:
grep -lZR 'fail!' . | xargs -0 -l sed -i -e 's/fail!/panic!/g'
You can of course also do this by hand.
[breaking-change]
Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.
This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.
[breaking-change]
Deprecates the `find_or_*` family of "internal mutation" methods on `HashMap` in
favour of the "external mutation" Entry API as part of RFC 60. Part of #17320,
but this still needs to be done on the rest of the maps. However they don't have
any internal mutation methods defined, so they can be done without deprecating
or breaking anything. Work on `BTree` is part of the complete rewrite in #17334.
The implemented API deviates from the API described in the RFC in two key places:
* `VacantEntry.set` yields a mutable reference to the inserted element to avoid code
duplication where complex logic needs to be done *regardless* of whether the entry
was vacant or not.
* `OccupiedEntry.into_mut` was added so that it is possible to return a reference
into the map beyond the lifetime of the Entry itself, providing functional parity
to `VacantEntry.set`.
This allows the full find_or_insert functionality to be implemented using this API.
A PR will be submitted to the RFC to amend this.
[breaking-change]
Change to resolve and update compiler and libs for uses.
[breaking-change]
Enum variants are now in both the value and type namespaces. This means that
if you have a variant with the same name as a type in scope in a module, you
will get a name clash and thus an error. The solution is to either rename the
type or the variant.
The implementation essentially desugars during type collection and AST
type conversion time into the parameter scheme we have now. Only fully
qualified names--e.g. `<T as Foo>::Bar`--are supported.
type they provide an implementation for.
This breaks code like:
mod foo {
struct Foo { ... }
}
impl foo::Foo {
...
}
Change this code to:
mod foo {
struct Foo { ... }
impl Foo {
...
}
}
Additionally, if you used the I/O path extension methods `stat`,
`lstat`, `exists`, `is_file`, or `is_dir`, note that these methods have
been moved to the the `std::io::fs::PathExtensions` trait. This breaks
code like:
fn is_it_there() -> bool {
Path::new("/foo/bar/baz").exists()
}
Change this code to:
use std::io::fs::PathExtensions;
fn is_it_there() -> bool {
Path::new("/foo/bar/baz").exists()
}
Closes#17059.
RFC #155.
[breaking-change]
Previously, this caused methods of re-exported types to not be inserted into
the search index. This fix may introduce some false positives, but in my
testing they appear as orphaned methods and end up not being inserted into the
final search index at a later stage.
Fixes issue #11943
Per API meeting
https://github.com/rust-lang/meeting-minutes/blob/master/Meeting-API-review-2014-08-13.md
# Changes to `core::option`
Most of the module is marked as stable or unstable; most of the unstable items are awaiting resolution of conventions issues.
However, a few methods have been deprecated, either due to lack of use or redundancy:
* `take_unwrap`, `get_ref` and `get_mut_ref` (redundant, and we prefer for this functionality to go through an explicit .unwrap)
* `filtered` and `while`
* `mutate` and `mutate_or_set`
* `collect`: this functionality is being moved to a new `FromIterator` impl.
# Changes to `core::result`
Most of the module is marked as stable or unstable; most of the unstable items are awaiting resolution of conventions issues.
* `collect`: this functionality is being moved to a new `FromIterator` impl.
* `fold_` is deprecated due to lack of use
* Several methods found in `core::option` are added here, including `iter`, `as_slice`, and variants.
Due to deprecations, this is a:
[breaking-change]
Previously, this caused methods of re-exported types to not be inserted into
the search index. This fix may introduce some false positives, but in my
testing they appear as orphaned methods and end up not being inserted into the
final search index at a later stage.
Fixes issue #11943
[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
methods.
This paves the way to associated items by introducing an extra level of
abstraction ("impl-or-trait item") between traits/implementations and
methods. This new abstraction is encoded in the metadata and used
throughout the compiler where appropriate.
There are no functional changes; this is purely a refactoring.
Implement `Index` for `RingBuf`, `HashMap`, `TreeMap`, `SmallIntMap`, and `TrieMap`.
If there’s anything that I missed or should be removed, let me know.