Stabilize C string literals
RFC: https://rust-lang.github.io/rfcs/3348-c-str-literal.html
Tracking issue: https://github.com/rust-lang/rust/issues/105723
Documentation PR (reference manual): https://github.com/rust-lang/reference/pull/1423
# Stabilization report
Stabilizes C string and raw C string literals (`c"..."` and `cr#"..."#`), which are expressions of type [`&CStr`](https://doc.rust-lang.org/stable/core/ffi/struct.CStr.html). Both new literals require Rust edition 2021 or later.
```rust
const HELLO: &core::ffi::CStr = c"Hello, world!";
```
C strings may contain any byte other than `NUL` (`b'\x00'`), and their in-memory representation is guaranteed to end with `NUL`.
## Implementation
Originally implemented by PR https://github.com/rust-lang/rust/pull/108801, which was reverted due to unintentional changes to lexer behavior in Rust editions < 2021.
The current implementation landed in PR https://github.com/rust-lang/rust/pull/113476, which restricts C string literals to Rust edition >= 2021.
## Resolutions to open questions from the RFC
* Adding C character literals (`c'.'`) of type `c_char` is not part of this feature.
* Support for `c"..."` literals does not prevent `c'.'` literals from being added in the future.
* C string literals should not be blocked on making `&CStr` a thin pointer.
* It's possible to declare constant expressions of type `&'static CStr` in stable Rust (as of v1.59), so C string literals are not adding additional coupling on the internal representation of `CStr`.
* The unstable `concat_bytes!` macro should not accept `c"..."` literals.
* C strings have two equally valid `&[u8]` representations (with or without terminal `NUL`), so allowing them to be used in `concat_bytes!` would be ambiguous.
* Adding a type to represent C strings containing valid UTF-8 is not part of this feature.
* Support for a hypothetical `&Utf8CStr` may be explored in the future, should such a type be added to Rust.
Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.
Deny more `~const` trait bounds
thereby fixing a family of ICEs (delayed bugs) for `feature(const_trait_impl, effects)` code.
As discussed
r? `@fee1-dead`
The debug probably isn't useful, and assigning all the `$foo`
metavariables to `foo` variables is verbose and weird. Also, `$x:expr`
usually doesn't have a space after the `:`.
C-variadic error improvements
A couple improvements for c-variadic errors:
1. Fix the bad-c-variadic error being emitted multiple times. If a function incorrectly contains multiple `...` args, and is also not foreign or `unsafe extern "C"`, only emit the latter error once rather than once per `...`.
2. Explicitly reject `const` C-variadic functions. Trying to use C-variadics in a const function would previously fail with an error like "destructor of `VaListImpl<'_>` cannot be evaluated at compile-time". Add an explicit check for const C-variadics to provide a clearer error: "functions cannot be both `const` and C-variadic". This also addresses one of the concerns in https://github.com/rust-lang/rust/issues/44930: "Ensure that even when this gets stabilized for regular functions, it is still rejected on const fn."
Trying to use C-variadics in a const function would previously fail with
an error like "destructor of `VaListImpl<'_>` cannot be evaluated at
compile-time".
Add an explicit check for const C-variadics to provide a clearer error:
"functions cannot be both `const` and C-variadic".
- Sort dependencies and features sections.
- Add `tidy` markers to the sorted sections so they stay sorted.
- Remove empty `[lib`] sections.
- Remove "See more keys..." comments.
Excluded files:
- rustc_codegen_{cranelift,gcc}, because they're external.
- rustc_lexer, because it has external use.
- stable_mir, because it has external use.
It's a better name, and lets "active features" refer to the features
that are active in a particular program, due to being declared or
enabled by the edition.
The commit also renames `Features::enabled` as `Features::active` to
match this; I changed my mind and have decided that "active" is a little
better thatn "enabled" for this, particularly because a number of
pre-existing comments use "active" in this way.
Finally, the commit renames `Status::Stable` as `Status::Accepted`, to
match `ACCEPTED_FEATURES`.
Previously, any associated function could have `~const` trait bounds on
generic parameters, which could lead to ICEs when these bounds were used
on associated functions of non-`#[const_trait] trait` or
non-`impl const` blocks.
Includes changes as per @fee1-dead's comments in #116210.
It had a really confusing name by shadowing the previous name, which has
caused issues in the past where people added their new syntax in the
legacy location.
This makes it clear.
There was an incomplete version of the check in parsing and a second
version in AST validation. This meant that some, but not all, invalid
uses were allowed inside macros/disabled cfgs. It also means that later
passes have a hard time knowing when the let expression is in a valid
location, sometimes causing ICEs.
- Add a field to ExprKind::Let in AST/HIR to mark whether it's in a
valid location.
- Suppress later errors and MIR construction for invalid let
expressions.
Parse unnamed fields and anonymous structs or unions (no-recovery)
It is part of #114782 which implements #49804. Only parse anonymous structs or unions in struct field definition positions.
r? `@petrochenkov`
Anonymous structs or unions are only allowed in struct field
definitions.
Co-authored-by: carbotaniuman <41451839+carbotaniuman@users.noreply.github.com>