Restrict `#[rustc_box]` to `Box::new` calls
Currently, `#[rustc_box]` can be applied to any call expression with a single argument. This PR only allows it to be applied to calls to `Box::new`
Instead of loading the Fluent resources for every crate in
`rustc_error_messages`, each crate generates typed identifiers for its
own diagnostics and creates a static which are pulled together in the
`rustc_driver` crate and provided to the diagnostic emitter.
Signed-off-by: David Wood <david.wood@huawei.com>
make `output_filenames` a real query
part of #105462
This may be a perf regression and is not obviously the right way forward. We may store this information in the resolver after freezing it for example.
Move format_args!() into AST (and expand it during AST lowering)
Implements https://github.com/rust-lang/compiler-team/issues/541
This moves FormatArgs from rustc_builtin_macros to rustc_ast_lowering. For now, the end result is the same. But this allows for future changes to do smarter things with format_args!(). It also allows Clippy to directly access the ast::FormatArgs, making things a lot easier.
This change turns the format args types into lang items. The builtin macro used to refer to them by their path. After this change, the path is no longer relevant, making it easier to make changes in `core`.
This updates clippy to use the new language items, but this doesn't yet make clippy use the ast::FormatArgs structure that's now available. That should be done after this is merged.
Convert all the crates that have had their diagnostic migration
completed (except save_analysis because that will be deleted soon and
apfloat because of the licensing problem).
Encode spans relative to the enclosing item -- enable on nightly
Follow-up to #84373 with the flag `-Zincremental-relative-spans` set by default.
This PR seeks to remove one of the main shortcomings of incremental: the handling of spans.
Changing the contents of a function may require redoing part of the compilation process for another function in another file because of span information is changed.
Within one file: all the spans in HIR change, so typechecking had to be re-done.
Between files: spans of associated types/consts/functions change, so type-based resolution needs to be re-done (hygiene information is stored in the span).
The flag `-Zincremental-relative-spans` encodes local spans relative to the span of an item, stored inside the `source_span` query.
Trap: stashed diagnostics are referenced by the "raw" span, so stealing them requires to remove the span's parent.
In order to avoid too much traffic in the span interner, span encoding uses the `ctxt_or_tag` field to encode:
- the parent when the `SyntaxContext` is 0;
- the `SyntaxContext` when the parent is `None`.
Even with this, the PR creates a lot of traffic to the Span interner, when a Span has both a LocalDefId parent and a non-root SyntaxContext. They appear in lowering, when we add a parent to all spans, including those which come from macros, and during inlining when we mark inlined spans.
The last commit changes how queries of `LocalDefId` manage their cache. I can put this in a separate PR if required.
Possible future directions:
- validate that all spans are marked in HIR validation;
- mark macro-expanded spans relative to the def-site and not the use-site.