That is, change `diagnostic_outside_of_impl` and
`untranslatable_diagnostic` from `allow` to `deny`, because more than
half of the compiler has be converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow`
attributes, which proves that this change is warranted.
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
Get rid of the hir_owner query.
This query was meant as a firewall between `hir_owner_nodes` which is supposed to change often, and the queries that only depend on the item signature. That firewall was inefficient, leaking the contents of the HIR body through `HirId`s.
`hir_owner` incurs a significant cost, as we need to hash HIR twice in multiple modes. This PR proposes to remove it, and simplify the hashing scheme.
For the future, `def_kind`, `def_span`... are much more efficient for incremental decoupling, and should be preferred.
Move async closure parameters into the resultant closure's future eagerly
Move async closure parameters into the closure's resultant future eagerly.
Before, we used to desugar `async |p1, p2, ..| { body }` as `|p1, p2, ..| { || async { body } }`. Now, we desugar the above like `|p1, p2, ..| { async move { let p1 = p1; let p2 = p2; ... body } }`. This mirrors the same desugaring that `async fn` does with its parameter types, and the compiler literally uses the same code via a shared helper function.
This removes the necessity for E0708, since now expressions like `async |x: i32| { x }` will not give you confusing borrow errors.
This does *not* fix the case where async closures have self-borrows. This will come with a general implementation of async closures, which is still in the works.
r? oli-obk
Don't synthesize host effect args inside trait object types
While we were indeed emitting an error for `~const` & `const` trait bounds in trait object types, we were still synthesizing host effect args for them.
Since we don't record the original trait bound modifiers for dyn-Trait in `hir::TyKind::TraitObject` (unlike we do for let's say impl-Trait, `hir::TyKind::OpaqueTy`), AstConv just assumes `ty::BoundConstness::NotConst` in `conv_object_ty_poly_trait_ref` which given `<host> dyn ~const NonConstTrait` resulted in us not realizing that `~const` was used on a non-const trait which lead to a failed assertion in the end.
Instead of updating `hir::TyKind::TraitObject` to track this kind of information, just strip the user-provided constness (similar to #119505).
Fixes#119524.
Introduce `const Trait` (always-const trait bounds)
Feature `const_trait_impl` currently lacks a way to express “always const” trait bounds. This makes it impossible to define generic items like fns or structs which contain types that depend on const method calls (\*). While the final design and esp. the syntax of effects / keyword generics isn't set in stone, some version of “always const” trait bounds will very likely form a part of it. Further, their implementation is trivial thanks to the `effects` backbone.
Not sure if this needs t-lang sign-off though.
(\*):
```rs
#![feature(const_trait_impl, effects, generic_const_exprs)]
fn compute<T: const Trait>() -> Type<{ T::generate() }> { /*…*/ }
struct Store<T: const Trait>
where
Type<{ T::generate() }>:,
{
field: Type<{ T::generate() }>,
}
```
Lastly, “always const” trait bounds are a perfect fit for `generic_const_items`.
```rs
#![feature(const_trait_impl, effects, generic_const_items)]
const DEFAULT<T: const Default>: T = T::default();
```
Previously, we (oli, fee1-dead and I) wanted to reinterpret `~const Trait` as `const Trait` in generic const items which would've been quite surprising and not very generalizable.
Supersedes #117530.
---
cc `@oli-obk`
As discussed
r? fee1-dead (or compiler)
Rollup of 5 pull requests
Successful merges:
- #119235 (Add missing feature gate for sanitizer CFI cfgs)
- #119240 (Make some non-diagnostic-affecting `QPath::LangItem` into regular `QPath`s)
- #119297 (Pass DeadItem and lint as consistent group in dead-code.)
- #119307 (Clean up some lifetimes in `rustc_pattern_analysis`)
- #119323 (add test for coercing never to infinite type)
r? `@ghost`
`@rustbot` modify labels: rollup
Make some non-diagnostic-affecting `QPath::LangItem` into regular `QPath`s
The rest of 'em affect diagnostics, so leave them alone... for now.
cc #115178
Make closures carry their own ClosureKind
Right now, we use the "`movability`" field of `hir::Closure` to distinguish a closure and a coroutine. This is paired together with the `CoroutineKind`, which is located not in the `hir::Closure`, but the `hir::Body`. This is strange and redundant.
This PR introduces `ClosureKind` with two variants -- `Closure` and `Coroutine`, which is put into `hir::Closure`. The `CoroutineKind` is thus removed from `hir::Body`, and `Option<Movability>` no longer needs to be a stand-in for "is this a closure or a coroutine".
r? eholk
Clairify `ast::PatKind::Struct` presese of `..` by using an enum instead of a bool
The bool is mainly used for when a `..` is present, but it is also set on recovery to avoid errors. The doc comment not describes both of these cases.
See cee794ee98/compiler/rustc_parse/src/parser/pat.rs (L890-L897) for the only place this is constructed.
r? ``@compiler-errors``
Add `IntoAsyncIterator`
This introduces the `IntoAsyncIterator` trait and uses it in the desugaring of the unstable `for await` loop syntax. This is mostly added for symmetry with `Iterator` and `IntoIterator`.
r? `@compiler-errors`
cc `@rust-lang/libs-api,` `@rust-lang/wg-async`
Add support for `for await` loops
This adds support for `for await` loops. This includes parsing, desugaring in AST->HIR lowering, and adding some support functions to the library.
Given a loop like:
```rust
for await i in iter {
...
}
```
this is desugared to something like:
```rust
let mut iter = iter.into_async_iter();
while let Some(i) = loop {
match core::pin::Pin::new(&mut iter).poll_next(cx) {
Poll::Ready(i) => break i,
Poll::Pending => yield,
}
} {
...
}
```
This PR also adds a basic `IntoAsyncIterator` trait. This is partly for symmetry with the way `Iterator` and `IntoIterator` work. The other reason is that for async iterators it's helpful to have a place apart from the data structure being iterated over to store state. `IntoAsyncIterator` gives us a good place to do this.
I've gated this feature behind `async_for_loop` and opened #118898 as the feature tracking issue.
r? `@compiler-errors`
Refactor AST trait bound modifiers
Instead of having two types to represent trait bound modifiers in the parser / the AST (`parser::ty::BoundModifiers` & `ast::TraitBoundModifier`), only to map one to the other later, just use `parser::ty::BoundModifiers` (moved & renamed to `ast::TraitBoundModifiers`).
The struct type is more extensible and easier to deal with (see [here](https://github.com/rust-lang/rust/pull/119099/files#r1430749981) and [here](https://github.com/rust-lang/rust/pull/119099/files#r1430752116) for context) since it more closely models what it represents: A compound of two kinds of modifiers, constness and polarity. Modeling this as an enum (the now removed `ast::TraitBoundModifier`) meant one had to add a new variant per *combination* of modifier kind, which simply isn't scalable and which lead to a lot of explicit non-DRY matches.
NB: `hir::TraitBoundModifier` being an enum is fine since HIR doesn't need to worry representing invalid modifier kind combinations as those get rejected during AST validation thereby immensely cutting down the number of possibilities.
Give `VariantData::Struct` named fields, to clairfy `recovered`.
Implements https://github.com/rust-lang/rust/pull/119121#discussion_r1431467066. Supersedes #119121
This way, it's clear what the bool fields means, instead of having to find where it's generated. Changes both ast and hir.
r? `@compiler-errors`