Account for capture kind in auto traits migration
Modifies the current auto traits migration for RFC2229 so it takes into account capture kind
Closes https://github.com/rust-lang/project-rfc-2229/issues/51
r? `@nikomatsakis`
2229: Reduce the size of closures with `capture_disjoint_fields`
One key observation while going over the closure size profile of rustc
was that we are disjointly capturing one or more fields starting at an
immutable reference.
Disjoint capture over immutable reference doesn't add too much value
because the fields can either be borrowed immutably or copied.
One possible edge case of the optimization is when a fields of a struct
have a longer lifetime than the structure, therefore we can't completely
get rid of all the accesses on top of sharef refs, only the rightmost
one. Here is a possible example:
```rust
struct MyStruct<'a> {
a: &'static A,
b: B,
c: C<'a>,
}
fn foo<'a, 'b>(m: &'a MyStruct<'b>) -> impl FnMut() + 'static {
let c = || drop(&*m.a.field_of_a);
// Here we really do want to capture `*m.a` because that outlives `'static`
// If we capture `m`, then the closure no longer outlives `'static'
// it is constrained to `'a`
}
```
r? `@nikomatsakis`
Checking that function is const if marked with rustc_const_unstable
Fixes#69630
This one is still missing tests to check the behavior but I checked by hand and it seemed to work.
I would not mind some direction for writing those unit tests!
Use diagnostic items instead of lang items for rfc2229 migrations
This PR removes the `Send`, `UnwindSafe` and `RefUnwindSafe` lang items introduced in https://github.com/rust-lang/rust/pull/84730, and uses diagnostic items instead to check for `Send`, `UnwindSafe` and `RefUnwindSafe` traits for RFC2229 migrations.
r? ```@nikomatsakis```
remove trailing newline
fix: test with attribute but missing const
Update compiler/rustc_passes/src/stability.rs
Co-authored-by: Léo Lanteri Thauvin <leseulartichaut@gmail.com>
Add test for extern functions
fix: using span_help instead of span_suggestion
add test for some ABIs + fmt fix
Update compiler/rustc_passes/src/stability.rs
Co-authored-by: Léo Lanteri Thauvin <leseulartichaut@gmail.com>
Refractor and add test for `impl const`
Add test to make sure no output + cleanup condition
-----------------------------
remove stdcall test, failing CI test
C abi is already tested in this, so it is not that useful to test another one.
The tested code is blind to which specific ABI for now, as long as it's not an intrinsic one
Fix ICE when misplaced visibility cannot be properly parsed
Fixes#86895
The issue was that a failure to parse the visibility was causing the original error to be dropped before being emitted.
The resulting error isn't quite as nice as when the visibility is parsed properly, but I'm not sure which error to prioritize here. Displaying both errors might be too confusing.
r? ```@estebank```
Sync rustc_codegen_cranelift
The main hightlight this sync is basic support for AArch64. Most things should work on Linux, but there does seem to be an ABI incompatibility causing proc-macros to crash, see https://github.com/bjorn3/rustc_codegen_cranelift/issues/1184. Thanks to ```@afonso360``` for implementing all Cranelift features that were necessary to compile for AArch64 using cg_clif. Also thanks to ```@shamatar``` for implementing the `llvm.x86.addcarry.64` and `llvm.x86.subborrow.64` llvm intrinsics used by num-bigint (https://github.com/bjorn3/rustc_codegen_cranelift/pull/1178) and ```@eggyal``` for implementing multi-threading support for the lazy jit mode. (https://github.com/bjorn3/rustc_codegen_cranelift/pull/1166)
r? ```@ghost```
```@rustbot``` label +A-codegen +A-cranelift +T-compiler
Recover from `&dyn mut ...` parse errors
Consider this example:
```rust
fn main() {
let r: &dyn mut Trait;
}
```
This currently leads to:
```
error: expected one of `!`, `(`, `;`, `=`, `?`, `for`, lifetime, or path, found keyword `mut`
--> src/main.rs:2:17
|
2 | let r: &dyn mut Trait;
| ^^^ expected one of 8 possible tokens
error: aborting due to previous error
```
However, especially for beginners, I think it is easy to get `&dyn mut` and `&mut dyn` confused. With my changes, I get a help message, and the parser even recovers:
```
error: `mut` must precede `dyn`
--> test.rs:2:12
|
2 | let r: &dyn mut Trait;
| ^^^^^^^^ help: place `mut` before `dyn`: `&mut dyn`
error[E0405]: cannot find trait `Trait` in this scope
--> test.rs:2:21
|
2 | let r: &dyn mut Trait;
| ^^^^^ not found in this scope
error: aborting due to 2 previous errors
```
Support lint tool names in rustc command line options
When rustc is running without a lint tool such as clippy enabled, options for lints such as `clippy::foo` are meant to be ignored. This was already working for those specified by attrs, such as `#![allow(clippy::foo)]`, but this did not work for command line arguments like `-A clippy::foo`. This PR fixes that issue.
Note that we discovered this issue while discussing https://github.com/rust-lang/cargo/issues/5034.
Fixes#86628.
This change merges `check_lint_and_tool_name` into `check_lint_name` in
order to avoid having two very similar functions.
Also adds the `.stderr` file back for the test case, since apparently
it is still needed.
Rename some Rust 2021 lints to better names
Based on conversation in https://github.com/rust-lang/rust/issues/85894.
Rename a bunch of Rust 2021 related lints:
Lints that are officially renamed because they are already in beta or stable:
* `disjoint_capture_migration` => `rust_2021_incompatible_closure_captures`
* `or_patterns_back_compat` => `rust_2021_incompatible_or_patterns`
* `non_fmt_panic` => `non_fmt_panics`
Lints that are renamed but don't require any back -compat work since they aren't yet in stable:
* `future_prelude_collision` => `rust_2021_prelude_collisions`
* `reserved_prefix` => `rust_2021_token_prefixes`
Lints that have been discussed but that I did not rename:
* ~`non_fmt_panic` and `bare_trait_object`: is making this plural worth the headache we might cause users?~
* `array_into_iter`: I'm unsure of a good name and whether bothering users with a name change is worth it.
r? `@nikomatsakis`
Refactor linker code
This merges `LinkerInfo` into `CrateInfo` as there is no reason to keep them separate. `LinkerInfo::to_linker` is merged into `get_linker` as both have different logic for each linker type and `to_linker` is directly called after `get_linker`. Also contains a couple of small cleanups.
See the individual commits for all changes.
Replace per-target ABI denylist with an allowlist
It makes very little sense to maintain denylists of ABIs when, as far as
non-generic ABIs are concerned, targets usually only support a small
subset of the available ABIs.
This has historically been a cause of bugs such as us allowing use of
the platform-specific ABIs on x86 targets – these in turn would cause
LLVM errors or assertions to fire.
In this PR we got rid of the per-target ABI denylists, and instead compute
which ABIs are supported with a simple match based on, mostly, the
`Target::arch` field. Among other things, this makes it impossible to
forget to consider this problem (in either direction) and forces one to
consider what the ABI support looks like when adding an ABI (rarely)
rather than target (often), which should hopefully also reduce the
cognitive load on both contributors as well as reviewers.
Fixes#57182
Sponsored by: standard.ai
---
## Summary for teams
One significant user-facing change after this PR is that there's now a future compat warning when building…
* `stdcall`, `fastcall`, `thiscall` using code with targets other than 32-bit x86 (i386...i686) or *-windows-*;
* `vectorcall` using code when building for targets other than x86 (either 32 or 64 bit) or *-windows-*.
Previously these ABIs have been accepted much more broadly, even for architectures and targets where this made no sense (e.g. on wasm32) and would fall back to the C ABI. In practice this doesn't seem to be used too widely and the [breakages in crater](https://github.com/rust-lang/rust/pull/86231#issuecomment-866300943) that we see are mostly about Windows-specific code that was missing relevant `cfg`s and just happened to successfully `check` on Linux for one reason or another.
The intention is that this warning becomes a hard error after some time.