Continue compilation after check_mod_type_wf errors
The ICEs fixed here were probably reachable through const eval gymnastics before, but now they are easily reachable without that, too.
The new errors are often bugfixes, where useful errors were missing, because they were reported after the early abort. In other cases sometimes they are just duplication of already emitted errors, which won't be user-visible due to deduplication.
fixes https://github.com/rust-lang/rust/issues/120860
Make sure `tcx.create_def` also depends on the forever red node, instead of just `tcx.at(span).create_def`
oversight from https://github.com/rust-lang/rust/pull/119136
Not actually an issue, because all uses of `tcx.create_def` were in the resolver, which is `eval_always`, but still good to harden against future uses of `create_def`
cc `@petrochenkov` `@WaffleLapkin`
Extend documentation for `Ty::to_opt_closure_kind` method
This API was... surprising to use. With a little extra documentation, the weirdness can be reduced quite a lot. :)
r? `@compiler-errors`
Use fewer delayed bugs.
For some cases where it's clear that an error has already occurred, e.g.:
- there's a comment stating exactly that, or
- things like HIR lowering, where we are lowering an error kind
The commit also tweaks some comments around delayed bug sites.
r? `@oli-obk`
Optimize `delayed_bug` handling.
Once we have emitted at least one error, delayed bugs won't be used. So we can (a) we can (a) discard any existing delayed bugs, and (b) stop recording any new delayed bugs.
This eliminates a longstanding `FIXME` comment. There should be no soundness issues because it's not possible to un-emit an error.
r? `@oli-obk`
Fix suggestion span for `?Sized` when param type has default
Fixes#120878
Diagnostic suggests adding `: ?Sized` in an incorrect place if a type parameter default is present
r? `@fmease`
Be less confident when `dyn` suggestion is not checked for object safety
#120275 no longer checks bare traits for object safety when making a `dyn` suggestion on Rust < 2021. In this case, qualify the suggestion with a note that the trait must be object safe, to prevent user confusion as seen in #116434
r? ```@fmease```
Uplift `TypeVisitableExt` into `rustc_type_ir`
This uplifts `TypeVisitableExt` into `rustc_type_ir` so it can be used in an interner-agnostic way. It also moves some `TypeSuperVisitable` bounds onto `Interner` since we don't expect to support libraries that have types which aren't foldable by default.
This restores a couple of asserts in the canonicalizer code we uplifted, and also makes it so that we can use type-flags-based helpers in the solver code, which I'm interested in uplifting.
r? lcnr
For some cases where it's clear that an error has already occurred,
e.g.:
- there's a comment stating exactly that, or
- things like HIR lowering, where we are lowering an error kind
The commit also tweaks some comments around delayed bug sites.
Fully stop using the HIR in trait impl checks
At least I hope I found all happy path usages. I'll need to check if I can figure out a way to make queries declare that they don't access the HIR except in error paths
`cargo update`
Run `cargo update`, with some pinning and fixes necessitated by that. This *should* unblock #112865
There's a couple of places where I only pinned a dependency in one location - this seems like a bit of a hack, but better than duplicating the FIXME across all `Cargo.toml` where a dependency is introduced.
cc `@Nilstrieb`
Ignore own item bounds in parent alias types in `for_each_item_bound`
Fixes#120912
I want to get a vibe check on this approach, which is very obviously a hack, but I believe something that is forwards-compatible with a more thorough solution and "good enough for now".
The problem here is that for a really deep rigid associated type, we are now repeatedly considering unrelated item bounds from the parent alias types, meaning we're doing a *lot* of extra work in the MIR inliner for deeply substituted rigid projections.
This feels intimately related to #107614. In that PR, we split *supertrait* bounds (bound which share the same `Self` type as the predicate which is being elaborated) and *implied* bounds (anything that is implied by elaborating the predicate).
The problem here is related to the fact that we don't maintain the split between these two for `item_bounds`. If we did, then when recursing into a parent alias type, we'd want to consider only the bounds that are given by [`PredicateFilter::All`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/astconv/enum.PredicateFilter.html#variant.SelfOnly) **except** those given by [`PredicateFilter::SelfOnly`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_hir_analysis/astconv/enum.PredicateFilter.html#variant.SelfOnly).
Do not assemble candidates for default impls
There is no reason (as far as I can tell?) that we should assemble an impl candidate for a default impl. This candidate itself does not prove that the impl holds, and any time that it *does* hold, there will be a more specializing non-default impl that also is assembled.
This is because `default impl<T> Foo for T {}` actually expands to `impl<T> Foo for T where T: Foo {}`. The only way to satisfy that where clause (without coinduction) is via *another* implementation that does hold -- precisely an impl that specializes it.
This should fix the specialization related regressions for #116494. That should lead to one root crate regression that doesn't have to do with specialization, which I think we can regress.
r? lcnr cc ``@rust-lang/types``
cc #31844
Check normalized call signature for WF in mir typeck
Unfortunately we don't check that the built-in implementations for `Fn*` traits are actually well-formed in the same way that we do for user-provided impls.
Essentially, when checking a call terminator, we end up with a signature that references an unnormalized `<[closure] as FnOnce<...>>::Output` in its output. That output type, due to the built-in impl, doesn't follow the expected rule that `WF(ty)` implies `WF(normalized(ty))`. We fix this by also checking the normalized signature here.
**See** boxy's detailed and useful explanation comment which explains this in more detail: https://github.com/rust-lang/rust/issues/114936#issuecomment-1710388741Fixes#114936Fixes#118876
r? types
cc ``@BoxyUwU`` ``@lcnr``
Once we have emitted at least one error, delayed bugs won't be used. So
we can (a) we can (a) discard any existing delayed bugs, and (b) stop
recording any new delayed bugs.
This eliminates a longstanding `FIXME` comment. There should be no
soundness issues because it's not possible to un-emit an error.
There are a couple of places where we call
`inner.emitter.emit_diagnostic` directly rather than going through
`inner.emit_diagnostic`, to guarantee the diagnostic is printed. This
feels dubious to me, particularly the bypassing of `TRACK_DIAGNOSTIC`.
This commit removes those.
- In `print_error_count`, it uses `ForceWarning` instead of `Warning`.
- It removes `DiagCtxtInner::failure_note`, because it only has three
uses and direct use of `emit_diagnostic` is consistent with other
similar locations.
- It removes `force_print_diagnostic`, and adds `struct_failure_note`,
and updates `print_query_stack` accordingly, which makes it more
normal. That location doesn't seem to need forced printing anyway.
RustWrapper: adapt for coverage mapping API changes
There've been a number of changes to the coverage mapping API today, but the end result is that specifying the MCDC parameters is now optional (they've been moved to the end of the argument list and now default to `std::monostate`).
`@rustbot` label: +llvm-main
r? `@durin42`
coverage: Simplify some parts of the coverage span refiner
This is another incremental step on my quest to dismantle the coverage span refiner into something more understandable and maintainable.
The biggest change here is splitting up `CoverageSpan` into several more specific structs. Doing so reveals that most of the places that were using that struct only need a subset of its fields and methods.
We can also get rid of separate tracking of `curr_original_span` and `prev_original_span`, by observing that `curr.span` never actually needs to be mutated, and that we can store `prev_original_span` directly in the dedicated struct for `prev`.
`@rustbot` label +A-code-coverage
match lowering: simplify block creation
Match lowering was doing complicated things with block creation. As far as I can tell it was trying to avoid creating unneeded blocks, but of the three places that start out with `otherwise = &mut None`, two of them called `otherwise.unwrap_or_else(|| self.cfg.start_new_block())` anyway. As far as I can tell the only place where this PR makes a difference is in `lower_match_tree`, which did indeed sometimes avoid creating the unreachable final block + FakeRead. Unless this is important I propose we do the naive thing instead.
I have not checked all the graph isomorphisms by hand, but at a glance the test diff looks sensible.
r? `@matthewjasper`
modify alias-relate to also normalize ambiguous opaques
allows a bunch of further cleanups and generally simplifies the type system. To handle https://github.com/rust-lang/trait-system-refactor-initiative/issues/8 we'll have to add a some additional complexity to the `(Alias, Infer)` branches in alias-relate, so removing the opaque type special case here is really valuable.
It does worsen `deduce_closure_signature` and friends even more as they now receive an inference variable which is only constrained via an `AliasRelate` goal. These probably have to look into alias relate goals somehow. Leaving that for a future PR as this is something we'll have to tackle regardless.
r? `@compiler-errors`
Update to LLVM 18
LLVM 18 final is planned to be released on Mar 5th. Rust 1.78 is planned to be released on May 2nd.
Tested images: dist-x86_64-linux, dist-s390x-linux, dist-aarch64-linux, dist-riscv64-linux, dist-loongarch64-linux, dist-x86_64-freebsd, dist-x86_64-illumos, dist-x86_64-musl, x86_64-linux-integration, test-various, armhf-gnu, i686-msvc, x86_64-msvc, i686-mingw, x86_64-mingw, x86_64-apple-1, x86_64-apple-2, dist-aarch64-apple
r? `@ghost`