fix universes in the NLL type tests
In the NLL code, we were not accommodating universes in the
`type_test` logic.
Fixes#98095.
r? `@compiler-errors`
This breaks some tests, however, so the purpose of this branch is more explanatory and perhaps to do a crater run.
Create elided lifetime parameters for function-like types
Split from https://github.com/rust-lang/rust/pull/97720
This PR refactor lifetime generic parameters in bare function types and parenthesized traits to introduce the additional required lifetimes as fresh parameters in a `for<>` bound.
This PR does the same to lifetimes appearing in closure signatures, and as-if introducing `for<>` bounds on closures (without the associated change in semantics).
r? `@petrochenkov`
Fix erroneous span for borrowck error
I am not confident that this is the correct fix, but it does the job. Open to suggestions for a real fix instead.
Fixes#97997
The issue is that we pass a [dummy location](https://doc.rust-lang.org/nightly/nightly-rustc/src/rustc_middle/mir/visit.rs.html#302) when type-checking the ["required consts"](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/mir/struct.Body.html#structfield.required_consts) that are needed by the MIR body during borrowck. This means that when we fail to evaluate the constant, we use the span of `bb0[0]`, instead of the actual span of the constant.
There are quite a few other places that use `START_BLOCK.start_location()`, `Location::START`, etc. when calling for a random/unspecified `Location` value. This is because, unlike (for example) `Span`, we don't have a dummy/miscellaneous value to use instead. I would appreciate guidance (either in this PR, or a follow-up) on what needs to be done to clean this up in general.
Make `ExprKind::Closure` a struct variant.
Simple refactor since we both need it to introduce additional fields in `ExprKind::Closure`.
r? ``@Aaron1011``
And likewise for the `Const::val` method.
Because its type is called `ConstKind`. Also `val` is a confusing name
because `ConstKind` is an enum with seven variants, one of which is
called `Value`. Also, this gives consistency with `TyS` and `PredicateS`
which have `kind` fields.
The commit also renames a few `Const` variables from `val` to `c`, to
avoid confusion with the `ConstKind::Value` variant.
Compute `is_late_bound_map` query separately from lifetime resolution
This query is actually very simple, and is only useful for functions and method. It can be computed directly by fetching the HIR, with no need to embed it within the lifetime resolution visitor.
Based on https://github.com/rust-lang/rust/pull/96296
Diagnose anonymous lifetimes errors more uniformly between async and regular fns
Async fns and regular fns are desugared differently. For the former, we create a generic parameter at HIR level. For the latter, we just create an anonymous region for typeck.
I plan to migrate regular fns to the async fn desugaring.
Before that, this PR attempts to merge the diagnostics for both cases.
r? ```@estebank```
Add suggestion for relaxing static lifetime bounds on dyn trait impls in NLL
This PR introduces suggestions for relaxing static lifetime bounds on impls of dyn trait items for NLL similar to what is already available in lexical region diagnostics.
Fixes https://github.com/rust-lang/rust/issues/95701
r? `@estebank`
Add EarlyBinder
Chalk has no concept of `Param` (e0ade19d13/chalk-ir/src/lib.rs (L579)) or `ReEarlyBound` (e0ade19d13/chalk-ir/src/lib.rs (L1308)). Everything is just "bound" - the equivalent of rustc's late-bound. It's not completely clear yet whether to move everything to the same time of binder in rustc or add `Param` and `ReEarlyBound` in Chalk.
Either way, tracking when we have or haven't already substituted out these in rustc can be helpful.
As a first step, I'm just adding a `EarlyBinder` newtype that is required to call `subst`. I also add a couple "transparent" `bound_*` wrappers around a couple query that are often immediately substituted.
r? `@nikomatsakis`
Check hidden types for well formedness at the definition site instead of only at the opaque type itself
work towards #90409 . We'll need to look into closure and generator bodies of closures and generators nested inside the hidden type in order to fix that. In hindsight this PR is not necessary for that, but it may be a bit easier with it and we'll get better diagnostics from it on its own.