Stabilize `atomic_as_ptr`
Fixes#66893
This stabilizes the `as_ptr` methods for atomics. The stabilization feature gate used here is `atomic_as_ptr` which supersedes `atomic_mut_ptr` to match the change in https://github.com/rust-lang/rust/pull/107736.
This needs FCP.
New stable API:
```rust
impl AtomicBool {
pub const fn as_ptr(&self) -> *mut bool;
}
impl AtomicI32 {
pub const fn as_ptr(&self) -> *mut i32;
}
// Includes all other atomic types
impl<T> AtomicPtr<T> {
pub const fn as_ptr(&self) -> *mut *mut T;
}
```
r? libs-api
``@rustbot`` label +needs-fcp
Add `round_ties_even` to `f32` and `f64`
Tracking issue: #96710
Redux of #82273. See also #55107
Adds a new method, `round_ties_even`, to `f32` and `f64`, that rounds the float to the nearest integer , rounding halfway cases to the number with an even least significant bit. Uses the `roundeven` LLVM intrinsic to do this.
Of the five IEEE 754 rounding modes, this is the only one that doesn't already have a round-to-integer function exposed by Rust (others are `round`, `floor`, `ceil`, and `trunc`). Ties-to-even is also the rounding mode used for int-to-float and float-to-float `as` casts, as well as float arithmentic operations. So not having an explicit rounding method for it seems like an oversight.
Bikeshed: this PR currently uses `round_ties_even` for the name of the method. But maybe `round_ties_to_even` is better, or `round_even`, or `round_to_even`?
[stdio][windows] Use MBTWC and WCTMB
`MultiByteToWideChar` and `WideCharToMultiByte` are extremely well optimized, and therefore should probably be used when we know we can (specifically in the Windows stdio stuff).
Fixes#107092
Update `rand` in the stdlib tests, and remove the `getrandom` feature from it.
The main goal is actually removing `getrandom`, so that eventually we can allow running the stdlib test suite on tier3 targets which don't have `getrandom` support. Currently those targets can only run the subset of stdlib tests that exist in uitests, and (generally speaking), we prefer not to test libstd functionality in uitests, which came up recently in https://github.com/rust-lang/rust/pull/104095 and https://github.com/rust-lang/rust/pull/104185. Additionally, the fact that we can't update `rand`/`getrandom` means we're stuck with the old set of tier3 targets, so can't test new ones.
~~Anyway, I haven't checked that this actually does allow use on tier3 targets (I think it does not, as some work is needed in stdlib submodules) but it moves us slightly closer to this, and seems to allow at least finally updating our `rand` dep, which definitely improves the status quo.~~ Checked and works now.
For the most part, our tests and benchmarks are fine using hard-coded seeds. A couple tests seem to fail with this (stuff manipulating the environment expecting no collisions, for example), or become pointless (all inputs to a function become equivalent). In these cases I've done a (gross) dance (ab)using `RandomState` and `Location::caller()` for some extra "entropy".
Trying to share that code seems *way* more painful than it's worth given that the duplication is a 7-line function, even if the lines are quite gross. (Keeping in mind that sharing it would require adding `rand` as a non-dev dep to std, and exposing a type from it publicly, all of which sounds truly awful, even if done behind a perma-unstable feature).
See also some previous attempts:
- https://github.com/rust-lang/rust/pull/86963 (in particular https://github.com/rust-lang/rust/pull/86963#issuecomment-885438936 which explains why this is non-trivial)
- https://github.com/rust-lang/rust/pull/89131
- https://github.com/rust-lang/rust/pull/96626#issuecomment-1114562857 (I tried in that PR at the same time, but settled for just removing the usage of `thread_rng()` from the benchmarks, since that was the main goal).
- https://github.com/rust-lang/rust/pull/104185
- Probably more. It's very tempting of a thing to "just update".
r? `@Mark-Simulacrum`
The UNIX and WASI implementations use `isatty`. The Windows
implementation uses the same logic the `atty` crate uses, including the
hack needed to detect msys terminals.
Implement this trait for `File` and for `Stdin`/`Stdout`/`Stderr` and
their locked counterparts on all platforms. On UNIX and WASI, implement
it for `BorrowedFd`/`OwnedFd`. On Windows, implement it for
`BorrowedHandle`/`OwnedHandle`.
Based on https://github.com/rust-lang/rust/pull/91121
Co-authored-by: Matt Wilkinson <mattwilki17@gmail.com>
PR #98165 with commits 7c360dc117 and c1a2db3372
has moved all of the components of these modules into different places,
namely {std,core}::sync and {std,core}::cell. The empty
modules remained. As they are unstable, we can simply remove them.
Stabilize bench_black_box
This PR stabilize `feature(bench_black_box)`.
```rust
pub fn black_box<T>(dummy: T) -> T;
```
The FCP was completed in https://github.com/rust-lang/rust/issues/64102.
`@rustbot` label +T-libs-api -T-libs
Stabilize `#![feature(mixed_integer_ops)]`
Tracked and FCP completed in #87840.
````@rustbot```` label +T-libs-api +S-waiting-on-review +relnotes
r? rust-lang/t-libs-api
Make `from_waker`, `waker` and `from_raw` unstably `const`
Make
- `Context::from_waker`
- `Context::waker`
- `Waker::from_raw`
`const`.
Also added a small test.
On later stages, the feature is already stable.
Result of running:
rg -l "feature.let_else" compiler/ src/librustdoc/ library/ | xargs sed -s -i "s#\\[feature.let_else#\\[cfg_attr\\(bootstrap, feature\\(let_else\\)#"
Revert let_chains stabilization
This is the revert against master, the beta revert was already done in #100538.
Bumps the stage0 compiler which already has it reverted.
Make use of `[wrapping_]byte_{add,sub}`
These new methods trivially replace old `.cast().wrapping_offset().cast()` & similar code.
Note that [`arith_offset`](https://doc.rust-lang.org/std/intrinsics/fn.arith_offset.html) and `wrapping_offset` are the same thing.
r? ``@scottmcm``
_split off from #100746_
Add next_up and next_down for f32/f64 - take 2
This is a revival of https://github.com/rust-lang/rust/pull/88728 which staled due to inactivity of the original author. I've address the last review comment.
---
This is a pull request implementing the features described at https://github.com/rust-lang/rfcs/pull/3173.
`@rustbot` label +T-libs-api -T-libs
r? `@scottmcm`
cc `@orlp`
Move EH personality functions to std
These were previously in the panic_unwind crate with dummy stubs in the
panic_abort crate. However it turns out that this is insufficient: we
still need a proper personality function even with -C panic=abort to
handle the following cases:
1) `extern "C-unwind"` still needs to catch foreign exceptions with -C
panic=abort to turn them into aborts. This requires landing pads and a
personality function.
2) ARM EHABI uses the personality function when creating backtraces.
The dummy personality function in panic_abort was causing backtrace
generation to get stuck in a loop since the personality function is
responsible for advancing the unwind state to the next frame.
Fixes#41004
Move Error trait into core
This PR moves the error trait from the standard library into a new unstable `error` module within the core library. The goal of this PR is to help unify error reporting across the std and no_std ecosystems, as well as open the door to integrating the error trait into the panic reporting system when reporting panics whose source is an errors (such as via `expect`).
This PR is a rewrite of https://github.com/rust-lang/rust/pull/90328 using new compiler features that have been added to support error in core.
These were previously in the panic_unwind crate with dummy stubs in the
panic_abort crate. However it turns out that this is insufficient: we
still need a proper personality function even with -C panic=abort to
handle the following cases:
1) `extern "C-unwind"` still needs to catch foreign exceptions with -C
panic=abort to turn them into aborts. This requires landing pads and a
personality function.
2) ARM EHABI uses the personality function when creating backtraces.
The dummy personality function in panic_abort was causing backtrace
generation to get stuck in a loop since the personality function is
responsible for advancing the unwind state to the next frame.
Use pointer `is_aligned*` methods
This PR replaces some manual alignment checks with calls to `pointer::{is_aligned, is_aligned_to}` and removes a useless pointer cast.
r? `@scottmcm`
_split off from #100746_
Expose `Utf8Lossy` as `Utf8Chunks`
This PR changes the feature for `Utf8Lossy` from `str_internals` to `utf8_lossy` and improves the API. This is done to eventually expose the API as stable.
Proposal: rust-lang/libs-team#54
Tracking Issue: #99543
Add cgroupv1 support to available_parallelism
Fixes#97549
My dev machine uses cgroup v2 so I was only able to test that code path. So the v1 code path is written only based on documentation. I could use some help testing that it works on a machine with cgroups v1:
```
$ x.py build --stage 1
# quota.rs
fn main() {
println!("{:?}", std:🧵:available_parallelism());
}
# assuming stage1 is linked in rustup
$ rust +stage1 quota.rs
# spawn a new cgroup scope for the current user
$ sudo systemd-run -p CPUQuota="300%" --uid=$(id -u) -tdS
# should print Ok(3)
$ ./quota
```
If it doesn't work as expected an strace, the contents of `/proc/self/cgroups` and the structure of `/sys/fs/cgroups` would help.
Stabilize the `core_c_str` and `alloc_c_string` feature gates.
Change `std::ffi` to re-export these types rather than creating type
aliases, since they now have matching stability.
Stabilize `core::ffi:c_*` and rexport in `std::ffi`
This only stabilizes the base types, not the non-zero variants, since
those have their own separate tracking issue and have not gone through
FCP to stabilize.
This only stabilizes the base types, not the non-zero variants, since
those have their own separate tracking issue and have not gone through
FCP to stabilize.
Fix FFI-unwind unsoundness with mixed panic mode
UB maybe introduced when an FFI exception happens in a `C-unwind` foreign function and it propagates through a crate compiled with `-C panic=unwind` into a crate compiled with `-C panic=abort` (#96926).
To prevent this unsoundness from happening, we will disallow a crate compiled with `-C panic=unwind` to be linked into `panic-abort` *if* it contains a call to `C-unwind` foreign function or function pointer. If no such call exists, then we continue to allow such mixed panic mode linking because it's sound (and stable). In fact we still need the ability to do mixed panic mode linking for std, because we only compile std once with `-C panic=unwind` and link it regardless panic strategy.
For libraries that wish to remain compile-once-and-linkable-to-both-panic-runtimes, a `ffi_unwind_calls` lint is added (gated under `c_unwind` feature gate) to flag any FFI unwind calls that will cause the linkable panic runtime be restricted.
In summary:
```rust
#![warn(ffi_unwind_calls)]
mod foo {
#[no_mangle]
pub extern "C-unwind" fn foo() {}
}
extern "C-unwind" {
fn foo();
}
fn main() {
// Call to Rust function is fine regardless ABI.
foo::foo();
// Call to foreign function, will cause the crate to be unlinkable to panic-abort if compiled with `-Cpanic=unwind`.
unsafe { foo(); }
//~^ WARNING call to foreign function with FFI-unwind ABI
let ptr: extern "C-unwind" fn() = foo::foo;
// Call to function pointer, will cause the crate to be unlinkable to panic-abort if compiled with `-Cpanic=unwind`.
ptr();
//~^ WARNING call to function pointer with FFI-unwind ABI
}
```
Fix#96926
`@rustbot` label: T-compiler F-c_unwind
[core] add `Exclusive` to sync
(discussed here: https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/Adding.20.60SyncWrapper.60.20to.20std)
`Exclusive` is a wrapper that exclusively allows mutable access to the inner value if you have exclusive access to the wrapper. It acts like a compile time mutex, and hold an unconditional `Sync` implementation.
## Justification for inclusion into std
- This wrapper unblocks actual problems:
- The example that I hit was a vector of `futures::future::BoxFuture`'s causing a central struct in a script to be non-`Sync`. To work around it, you either write really difficult code, or wrap the futures in a needless mutex.
- Easy to maintain: this struct is as simple as a wrapper can get, and its `Sync` implementation has very clear reasoning
- Fills a gap: `&/&mut` are to `RwLock` as `Exclusive` is to `Mutex`
## Public Api
```rust
// core::sync
#[derive(Default)]
struct Exclusive<T: ?Sized> { ... }
impl<T: ?Sized> Sync for Exclusive {}
impl<T> Exclusive<T> {
pub const fn new(t: T) -> Self;
pub const fn into_inner(self) -> T;
}
impl<T: ?Sized> Exclusive<T> {
pub const fn get_mut(&mut self) -> &mut T;
pub const fn get_pin_mut(Pin<&mut self>) -> Pin<&mut T>;
pub const fn from_mut(&mut T) -> &mut Exclusive<T>;
pub const fn from_pin_mut(Pin<&mut T>) -> Pin<&mut Exclusive<T>>;
}
impl<T: Future> Future for Exclusive { ... }
impl<T> From<T> for Exclusive<T> { ... }
impl<T: ?Sized> Debug for Exclusive { ... }
```
## Naming
This is a big bikeshed, but I felt that `Exclusive` captured its general purpose quite well.
## Stability and location
As this is so simple, it can be in `core`. I feel that it can be stabilized quite soon after it is merged, if the libs teams feels its reasonable to add. Also, I don't really know how unstable feature work in std/core's codebases, so I might need help fixing them
## Tips for review
The docs probably are the thing that needs to be reviewed! I tried my best, but I'm sure people have more experience than me writing docs for `Core`
### Implementation:
The API is mostly pulled from https://docs.rs/sync_wrapper/latest/sync_wrapper/struct.SyncWrapper.html (which is apache 2.0 licenesed), and the implementation is trivial:
- its an unsafe justification for pinning
- its an unsafe justification for the `Sync` impl (mostly reasoned about by ````@danielhenrymantilla```` here: https://github.com/Actyx/sync_wrapper/pull/2)
- and forwarding impls, starting with derivable ones and `Future`
Use `fcntl(fd, F_GETFD)` to detect if standard streams are open
In the previous implementation, if the standard streams were open,
but the RLIMIT_NOFILE value was below three, the poll would fail
with EINVAL:
> ERRORS: EINVAL The nfds value exceeds the RLIMIT_NOFILE value.
Switch to the existing fcntl based implementation to avoid the issue.
Fixes#96621.
Rollup of 6 pull requests
Successful merges:
- #97089 (Improve settings theme display)
- #97229 (Document the current aliasing rules for `Box<T>`.)
- #97371 (Suggest adding a semicolon to a closure without block)
- #97455 (Stabilize `toowned_clone_into`)
- #97565 (Add doc alias `memset` to `write_bytes`)
- #97569 (Remove `memset` alias from `fill_with`.)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Implement [OsStr]::join
Implements join for `OsStr` and `OsString` slices:
```Rust
let strings = [OsStr::new("hello"), OsStr::new("dear"), OsStr::new("world")];
assert_eq!("hello dear world", strings.join(OsStr::new(" ")));
````
This saves one from converting to strings and back, or from implementing it manually.
This PR has been re-filed after #96744 was first accidentally merged and then reverted.
The change is instantly stable and thus:
r? rust-lang/libs-api `@rustbot` label +T-libs-api -T-libs
cc `@thomcc` `@m-ou-se` `@faptc`
Add a dedicated length-prefixing method to `Hasher`
This accomplishes two main goals:
- Make it clear who is responsible for prefix-freedom, including how they should do it
- Make it feasible for a `Hasher` that *doesn't* care about Hash-DoS resistance to get better performance by not hashing lengths
This does not change rustc-hash, since that's in an external crate, but that could potentially use it in future.
Fixes#94026
r? rust-lang/libs
---
The core of this change is the following two new methods on `Hasher`:
```rust
pub trait Hasher {
/// Writes a length prefix into this hasher, as part of being prefix-free.
///
/// If you're implementing [`Hash`] for a custom collection, call this before
/// writing its contents to this `Hasher`. That way
/// `(collection![1, 2, 3], collection![4, 5])` and
/// `(collection![1, 2], collection![3, 4, 5])` will provide different
/// sequences of values to the `Hasher`
///
/// The `impl<T> Hash for [T]` includes a call to this method, so if you're
/// hashing a slice (or array or vector) via its `Hash::hash` method,
/// you should **not** call this yourself.
///
/// This method is only for providing domain separation. If you want to
/// hash a `usize` that represents part of the *data*, then it's important
/// that you pass it to [`Hasher::write_usize`] instead of to this method.
///
/// # Examples
///
/// ```
/// #![feature(hasher_prefixfree_extras)]
/// # // Stubs to make the `impl` below pass the compiler
/// # struct MyCollection<T>(Option<T>);
/// # impl<T> MyCollection<T> {
/// # fn len(&self) -> usize { todo!() }
/// # }
/// # impl<'a, T> IntoIterator for &'a MyCollection<T> {
/// # type Item = T;
/// # type IntoIter = std::iter::Empty<T>;
/// # fn into_iter(self) -> Self::IntoIter { todo!() }
/// # }
///
/// use std:#️⃣:{Hash, Hasher};
/// impl<T: Hash> Hash for MyCollection<T> {
/// fn hash<H: Hasher>(&self, state: &mut H) {
/// state.write_length_prefix(self.len());
/// for elt in self {
/// elt.hash(state);
/// }
/// }
/// }
/// ```
///
/// # Note to Implementers
///
/// If you've decided that your `Hasher` is willing to be susceptible to
/// Hash-DoS attacks, then you might consider skipping hashing some or all
/// of the `len` provided in the name of increased performance.
#[inline]
#[unstable(feature = "hasher_prefixfree_extras", issue = "88888888")]
fn write_length_prefix(&mut self, len: usize) {
self.write_usize(len);
}
/// Writes a single `str` into this hasher.
///
/// If you're implementing [`Hash`], you generally do not need to call this,
/// as the `impl Hash for str` does, so you can just use that.
///
/// This includes the domain separator for prefix-freedom, so you should
/// **not** call `Self::write_length_prefix` before calling this.
///
/// # Note to Implementers
///
/// The default implementation of this method includes a call to
/// [`Self::write_length_prefix`], so if your implementation of `Hasher`
/// doesn't care about prefix-freedom and you've thus overridden
/// that method to do nothing, there's no need to override this one.
///
/// This method is available to be overridden separately from the others
/// as `str` being UTF-8 means that it never contains `0xFF` bytes, which
/// can be used to provide prefix-freedom cheaper than hashing a length.
///
/// For example, if your `Hasher` works byte-by-byte (perhaps by accumulating
/// them into a buffer), then you can hash the bytes of the `str` followed
/// by a single `0xFF` byte.
///
/// If your `Hasher` works in chunks, you can also do this by being careful
/// about how you pad partial chunks. If the chunks are padded with `0x00`
/// bytes then just hashing an extra `0xFF` byte doesn't necessarily
/// provide prefix-freedom, as `"ab"` and `"ab\u{0}"` would likely hash
/// the same sequence of chunks. But if you pad with `0xFF` bytes instead,
/// ensuring at least one padding byte, then it can often provide
/// prefix-freedom cheaper than hashing the length would.
#[inline]
#[unstable(feature = "hasher_prefixfree_extras", issue = "88888888")]
fn write_str(&mut self, s: &str) {
self.write_length_prefix(s.len());
self.write(s.as_bytes());
}
}
```
With updates to the `Hash` implementations for slices and containers to call `write_length_prefix` instead of `write_usize`.
`write_str` defaults to using `write_length_prefix` since, as was pointed out in the issue, the `write_u8(0xFF)` approach is insufficient for hashers that work in chunks, as those would hash `"a\u{0}"` and `"a"` to the same thing. But since `SipHash` works byte-wise (there's an internal buffer to accumulate bytes until a full chunk is available) it overrides `write_str` to continue to use the add-non-UTF-8-byte approach.
---
Compatibility:
Because the default implementation of `write_length_prefix` calls `write_usize`, the changed hash implementation for slices will do the same thing the old one did on existing `Hasher`s.
This accomplishes two main goals:
- Make it clear who is responsible for prefix-freedom, including how they should do it
- Make it feasible for a `Hasher` that *doesn't* care about Hash-DoS resistance to get better performance by not hashing lengths
This does not change rustc-hash, since that's in an external crate, but that could potentially use it in future.
This reverts commit 9aed829fe6.
Fixes https://github.com/rust-lang/rust/issues/96435 , a regression
in crates doing `use std::ffi::*;` and `use std::os::raw::*;`.
We can re-add this re-export once the `core::ffi` types
are stable, and thus the `std::os::raw` types can become re-exports as
well, which will avoid the conflict. (Type aliases to the same type
still conflict, but re-exports of the same type don't.)
Create (unstable) 2024 edition
[On Zulip](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/Deprecating.20macro.20scoping.20shenanigans/near/272860652), there was a small aside regarding creating the 2024 edition now as opposed to later. There was a reasonable amount of support and no stated opposition.
This change creates the 2024 edition in the compiler and creates a prelude for the 2024 edition. There is no current difference between the 2021 and 2024 editions. Cargo and other tools will need to be updated separately, as it's not in the same repository. This change permits the vast majority of work towards the next edition to proceed _now_ instead of waiting until 2024.
For sanity purposes, I've merged the "hello" UI tests into a single file with multiple revisions. Otherwise we'd end up with a file per edition, despite them being essentially identical.
````@rustbot```` label +T-lang +S-waiting-on-review
Not sure on the relevant team, to be honest.
Relevant commit messages from squashed history in order:
Add initial version of ThinBox
update test to actually capture failure
swap to middle ptr impl based on matthieu-m's design
Fix stack overflow in debug impl
The previous version would take a `&ThinBox<T>` and deref it once, which
resulted in a no-op and the same type, which it would then print causing
an endless recursion. I've switched to calling `deref` by name to let
method resolution handle deref the correct number of times.
I've also updated the Drop impl for good measure since it seemed like it
could be falling prey to the same bug, and I'll be adding some tests to
verify that the drop is happening correctly.
add test to verify drop is behaving
add doc examples and remove unnecessary Pointee bounds
ThinBox: use NonNull
ThinBox: tests for size
Apply suggestions from code review
Co-authored-by: Alphyr <47725341+a1phyr@users.noreply.github.com>
use handle_alloc_error and fix drop signature
update niche and size tests
add cfg for allocating APIs
check null before calculating offset
add test for zst and trial usage
prevent optimizer induced ub in drop and cleanup metadata gathering
account for arbitrary size and alignment metadata
Thank you nika and thomcc!
Update library/alloc/src/boxed/thin.rs
Co-authored-by: Josh Triplett <josh@joshtriplett.org>
Update library/alloc/src/boxed/thin.rs
Co-authored-by: Josh Triplett <josh@joshtriplett.org>