It's a very thin wrapper that pairs `MoveDataBuilder` with a `Location`,
and it has four lifetime arguments. This commit removes it by just
adding a `Location` to `MoveDataBuilder`.
There are four related dataflow structs: `MaybeInitializedPlaces`,
`MaybeUninitializedPlaces`, and `EverInitializedPlaces`,
`DefinitelyInitializedPlaces`. They all have a `&Body` and a
`&MoveData<'tcx>` field. The first three use different lifetimes for the
two fields, but the last one uses the same lifetime for both.
This commit changes the first three to use the same lifetime, removing
the need for one of the lifetimes. Other structs that also lose a
lifetime as a result of this are `LivenessContext`, `LivenessResults`,
`InitializationData`.
It then does similar things in various other structs.
Currently it constructs two vectors `calls_to_terminated` and
`cleanups_to_remove` in the main loop, and then processes them after the
main loop. But the processing can be done in the main loop, avoiding the
need for the vectors.
When running tests without the `--force-rerun` flag, compiletest will
automatically skip any tests that (in its judgement) don't need to be run again
since the last time they were run.
This patch adds an explicit reason to those skipped tests, which is visible
when running with `rust.verbose-tests = true` in `config.toml`.
Correctly handle stability of `#[diagnostic]` attributes
This commit changes the way we treat the stability of attributes in the
`#[diagnostic]` namespace. Instead of relaying on ad-hoc checks to
ensure at call side that a certain attribute is really usable at that
location it centralises the logic to one place. For diagnostic
attributes comming from other crates it just skips serializing
attributes that are not stable and that do not have the corresponding
feature enabled. For attributes from the current crate we can just use
the feature information provided by `TyCtx`.
r? `@compiler-errors`
Previously, the logic here was simply checking whether the option was set in `config.toml`.
This approach was not manageable in our CI runners as we set so many options in config.toml.
In reality, those values are not incompatible since they are usually the same value used to generate
the CI llvm. Now, the new logic compares the configuration values with the values used to generate
the CI llvm, so we get more precise results and make the process more manageable.
Signed-off-by: onur-ozkan <work@onurozkan.dev>
Break into the debugger (if attached) on panics (Windows, Linux, macOS, FreeBSD)
The developer experience for panics is to provide the backtrace and
exit the program. When running under debugger, that might be improved
by breaking into the debugger once the code panics thus enabling
the developer to examine the program state at the exact time when
the code panicked.
Let the developer catch the panic in the debugger if it is attached.
If the debugger is not attached, nothing changes. Providing this feature
inside the standard library facilitates better debugging experience.
Validated under Windows, Linux, macOS 14.6, and FreeBSD 13.3..14.1.
Split x86_64-msvc-ext into two jobs
This is an attempt to mitigate (but not resolve) the high failure rate of the x86_64-msvc-ext builder. The theory being that doing less makes it less likely to fail. But this may not work as having an extra job that may fail might be worse.
try-job: x86_64-msvc-ext
try-job: x86_64-msvc-ext2
In https://github.com/rust-lang/rust/pull/124748, I mistakenly conflated
"not SjLj" to mean "ARM EHABI", which isn't true, watchOS armv7k
(specifically only that architecture) uses a third unwinding method
called "DWARF CFI".
Fix double handling in `collect_tokens`
Double handling of AST nodes can occur in `collect_tokens`. This is when an inner call to `collect_tokens` produces an AST node, and then an outer call to `collect_tokens` produces the same AST node. This can happen in a few places, e.g. expression statements where the statement delegates `HasTokens` and `HasAttrs` to the expression. It will also happen more after #124141.
This PR fixes some double handling cases that cause problems, including #129166.
r? `@petrochenkov`
Supress niches in coroutines to avoid aliasing violations
As mentioned [here](https://github.com/rust-lang/rust/issues/63818#issuecomment-2264915918), using niches in fields of coroutines that are referenced by other fields is unsound: the discriminant accesses violate the aliasing requirements of the reference pointing to the relevant field. This issue causes [Miri errors in practice](https://github.com/rust-lang/miri/issues/3780).
The "obvious" fix for this is to suppress niches in coroutines. That's what this PR does. However, we have several tests explicitly ensuring that we *do* use niches in coroutines. So I see two options:
- We guard this behavior behind a `-Z` flag (that Miri will set by default). There is no known case of these aliasing violations causing miscompilations. But absence of evidence is not evidence of absence...
- (What this PR does right now.) We temporarily adjust the coroutine layout logic and the associated tests until the proper fix lands. The "proper fix" here is to wrap fields that other fields can point to in [`UnsafePinned`](https://github.com/rust-lang/rust/issues/125735) and make `UnsafePinned` suppress niches; that would then still permit using niches of *other* fields (those that never get borrowed). However, I know that coroutine sizes are already a problem, so I am not sure if this temporary size regression is acceptable.
`@compiler-errors` any opinion? Also who else should be Cc'd here?