WASM fundamentally doesn't support signals. If WASI ever gets support
for notifying the guest process of a Ctrl-C that happened, this would
have to be done through the guest process polling for the signal, which
will require thread support in WASI too to be compatible with the api
provided by the ctrlc crate.
Ensure we do not accidentally insert new early aborts in the analysis passes
pulling the infallible part out into a separate function makes sure that someone needs to change the signature in order to regress this.
We only want to stop compilation in the presence of errors after all analyses are done, but before we start running lints.
per-item we can still stop doing work if previous queries returned errors, but that's a separate story.
Add consistency with phrases "meantime" and "mean time"
"mean time" is used in a few places while "meantime" is used everywhere else; this would make usage consistent throughout the codebase.
Print a backtrace in const eval if interrupted
Demo:
```rust
#![feature(const_eval_limit)]
#![const_eval_limit = "0"]
const OW: u64 = {
let mut res: u64 = 0;
let mut i = 0;
while i < u64::MAX {
res = res.wrapping_add(i);
i += 1;
}
res
};
fn main() {
println!("{}", OW);
}
```
```
╭ ➜ ben@archlinux:~/rust
╰ ➤ rustc +stage1 spin.rs
^Cerror[E0080]: evaluation of constant value failed
--> spin.rs:8:33
|
8 | res = res.wrapping_add(i);
| ^ Compilation was interrupted
note: erroneous constant used
--> spin.rs:15:20
|
15 | println!("{}", OW);
| ^^
note: erroneous constant used
--> spin.rs:15:20
|
15 | println!("{}", OW);
| ^^
|
= note: this note originates in the macro `$crate::format_args_nl` which comes from the expansion of the macro `println` (in Nightly builds, run with -Z macro-backtrace for more info)
error: aborting due to previous error
For more information about this error, try `rustc --explain E0080`.
```
Suggest `RUST_MIN_STACK` workaround on overflow
For some Rust crates, like p384, we can't do a whole lot about it even if the stack overflow is reported like in rust-lang/rust#122357 because the problem may be inside LLVM or another codegen backend. We can, however, suggest people set a new `RUST_MIN_STACK` value while handling the SIGSEGV, as that stack-setting will carry forward into the dylib.
As a bonus, this also leads to cleaning up the stack-setting code a bit.
Backend and target selection is a mess: the target can override the
backend (via `Target::default_codegen_backend`), *and* the backend can
override the target (via `CodegenBackend::target_override`).
The code that handles this is ugly. It calls `build_target_config`
twice, once before getting the backend and once again afterward. It also
must check that both overrides aren't triggering at the same time.
This commit removes the latter override. It's used in rust-gpu but
@eddyb said via Zulip that removing it would be ok. This simplifies the
code greatly, and will allow some nice follow-up refactorings.
Make incremental sessions identity no longer depend on the crate names provided by source code
This makes incremental sessions identity no longer depend on the crate names provided by source code, implementing
https://github.com/rust-lang/compiler-team/issues/726.
r? ````@oli-obk````
Rollup of 15 pull requests
Successful merges:
- #116791 (Allow codegen backends to opt-out of parallel codegen)
- #116793 (Allow targets to override default codegen backend)
- #117458 (LLVM Bitcode Linker: A self contained linker for nvptx and other targets)
- #119385 (Fix type resolution of associated const equality bounds (take 2))
- #121438 (std support for wasm32 panic=unwind)
- #121893 (Add tests (and a bit of cleanup) for interior mut handling in promotion and const-checking)
- #122080 (Clarity improvements to `DropTree`)
- #122152 (Improve diagnostics for parenthesized type arguments)
- #122166 (Remove the unused `field_remapping` field from `TypeLowering`)
- #122249 (interpret: do not call machine read hooks during validation)
- #122299 (Store backtrace for `must_produce_diag`)
- #122318 (Revision-related tweaks for next-solver tests)
- #122320 (Use ptradd for vtable indexing)
- #122328 (unix_sigpipe: Replace `inherit` with `sig_dfl` in syntax tests)
- #122330 (bootstrap readme: fix, improve, update)
r? `@ghost`
`@rustbot` modify labels: rollup
Move metadata header and version checks together
This will make it easier to report rustc versions for older metadata formats.
Split out of https://github.com/rust-lang/rust/pull/120855
Refactor pre-getopts command line argument handling
Rebased version of #111658. I've also fixed the Windows CI failure (although I don't have access to Windows to test it myself).
Remove `feed_local_def_id`
best reviewed commit by commit
Basically I returned `TyCtxtFeed` from `create_def` and then preserved that in the local caches
based on https://github.com/rust-lang/rust/pull/121084
r? ````@petrochenkov````
Rework `untranslatable_diagnostic` lint
Currently it only checks calls to functions marked with `#[rustc_lint_diagnostics]`. This PR changes it to check calls to any function with an `impl Into<{D,Subd}iagnosticMessage>` parameter. This greatly improves its coverage and doesn't rely on people remembering to add `#[rustc_lint_diagnostics]`. It also lets us add `#[rustc_lint_diagnostics]` to a number of functions that don't have an `impl Into<{D,Subd}iagnosticMessage>`, such as `Diag::span`.
r? ``@davidtwco``
Currently it only checks calls to functions marked with
`#[rustc_lint_diagnostics]`. This commit changes it to check calls to
any function with an `impl Into<{D,Subd}iagMessage>` parameter. This
greatly improves its coverage and doesn't rely on people remembering to
add `#[rustc_lint_diagnostics]`.
The commit also adds `#[allow(rustc::untranslatable_diagnostic)`]
attributes to places that need it that are caught by the improved lint.
These places that might be easy to convert to translatable diagnostics.
Finally, it also:
- Expands and corrects some comments.
- Does some minor formatting improvements.
- Adds missing `DecorateLint` cases to
`tests/ui-fulldeps/internal-lints/diagnostics.rs`.
Hint user to update nightly on ICEs produced from outdated nightly
This is a conservative best-effort approach to detect a potentially outdated nightly; it will fallback to the regular ICE-reporting if any of the following cases are true:
- Channel is not nightly
- Version information is not available
- Version date is not parseable as a YYYY-MM-DD or is missing
- System time is at least 36 hours ahead of the user's nightly release datetime.
- Any internal features are used.
Note that I'm not sure how to make a test for this: I tested this manually by `CFG_VER_DATE="2020-02-02" ./x build library --stage 1`, and also changing the channel detection in `rustc_driver_impl` from `Some("nightly")` to `Some("nightly" | "dev")`, and then running `rustc +stage1 test.rs -Ztreat-err-as-bug=1` with a non-existent `test.rs`.
<img width="1145" alt="Screenshot 2024-02-27 at 01 12 28" src="https://github.com/rust-lang/rust/assets/39484203/eff6af2e-4b19-4a70-af57-cd739ecf0e84">
Closes#118832.
Existing names for values of this type are `sess`, `parse_sess`,
`parse_session`, and `ps`. `sess` is particularly annoying because
that's also used for `Session` values, which are often co-located, and
it can be difficult to know which type a value named `sess` refers to.
(That annoyance is the main motivation for this change.) `psess` is nice
and short, which is good for a name used this much.
The commit also renames some `parse_sess_created` values as
`psess_created`.
Invert diagnostic lints.
That is, change `diagnostic_outside_of_impl` and `untranslatable_diagnostic` from `allow` to `deny`, because more than half of the compiler has been converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow` attributes, which proves that this change is warranted.
r? ````@davidtwco````
When `catch_fatal_errors` catches a `FatalErrorMarker`, it returns an
`ErrorGuaranteed` that is conjured out of thin air with
`unchecked_claim_error_was_emitted`. But that `ErrorGuaranteed` is never
used.
This commit changes it to instead conjure a `FatalError` out of thin
air. (A non-deprecated action!) This makes more sense because
`FatalError` and `FatalErrorMarker` are a natural pairing -- a
`FatalErrorMarker` is created by calling `FatalError::raise`, so this is
effectively getting back the original `FatalError`.
This requires a tiny change in `catch_with_exit_code`. The old result of
the `catch_fatal_errors` call there was
`Result<Result<(), ErrorGuaranteed>, ErrorGuaranteed>` which could be
`flatten`ed into `Result<(), ErrorGuaranteed>`. The new result of the
`catch_fatal_errors` calls is
`Result<Result<(), ErrorGuaranteed>, FatalError>`, which can't be
`flatten`ed but is still easily matched for the success case.
That is, change `diagnostic_outside_of_impl` and
`untranslatable_diagnostic` from `allow` to `deny`, because more than
half of the compiler has be converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow`
attributes, which proves that this change is warranted.
Error codes are integers, but `String` is used everywhere to represent
them. Gross!
This commit introduces `ErrCode`, an integral newtype for error codes,
replacing `String`. It also introduces a constant for every error code,
e.g. `E0123`, and removes the `error_code!` macro. The constants are
imported wherever used with `use rustc_errors::codes::*`.
With the old code, we have three different ways to specify an error code
at a use point:
```
error_code!(E0123) // macro call
struct_span_code_err!(dcx, span, E0123, "msg"); // bare ident arg to macro call
\#[diag(name, code = "E0123")] // string
struct Diag;
```
With the new code, they all use the `E0123` constant.
```
E0123 // constant
struct_span_code_err!(dcx, span, E0123, "msg"); // constant
\#[diag(name, code = E0123)] // constant
struct Diag;
```
The commit also changes the structure of the error code definitions:
- `rustc_error_codes` now just defines a higher-order macro listing the
used error codes and nothing else.
- Because that's now the only thing in the `rustc_error_codes` crate, I
moved it into the `lib.rs` file and removed the `error_codes.rs` file.
- `rustc_errors` uses that macro to define everything, e.g. the error
code constants and the `DIAGNOSTIC_TABLES`. This is in its new
`codes.rs` file.
This works for most of its call sites. This is nice, because `emit` very
much makes sense as a consuming operation -- indeed,
`DiagnosticBuilderState` exists to ensure no diagnostic is emitted
twice, but it uses runtime checks.
For the small number of call sites where a consuming emit doesn't work,
the commit adds `DiagnosticBuilder::emit_without_consuming`. (This will
be removed in subsequent commits.)
Likewise, `emit_unless` becomes consuming. And `delay_as_bug` becomes
consuming, while `delay_as_bug_without_consuming` is added (which will
also be removed in subsequent commits.)
All this requires significant changes to `DiagnosticBuilder`'s chaining
methods. Currently `DiagnosticBuilder` method chaining uses a
non-consuming `&mut self -> &mut Self` style, which allows chaining to
be used when the chain ends in `emit()`, like so:
```
struct_err(msg).span(span).emit();
```
But it doesn't work when producing a `DiagnosticBuilder` value,
requiring this:
```
let mut err = self.struct_err(msg);
err.span(span);
err
```
This style of chaining won't work with consuming `emit` though. For
that, we need to use to a `self -> Self` style. That also would allow
`DiagnosticBuilder` production to be chained, e.g.:
```
self.struct_err(msg).span(span)
```
However, removing the `&mut self -> &mut Self` style would require that
individual modifications of a `DiagnosticBuilder` go from this:
```
err.span(span);
```
to this:
```
err = err.span(span);
```
There are *many* such places. I have a high tolerance for tedious
refactorings, but even I gave up after a long time trying to convert
them all.
Instead, this commit has it both ways: the existing `&mut self -> Self`
chaining methods are kept, and new `self -> Self` chaining methods are
added, all of which have a `_mv` suffix (short for "move"). Changes to
the existing `forward!` macro lets this happen with very little
additional boilerplate code. I chose to add the suffix to the new
chaining methods rather than the existing ones, because the number of
changes required is much smaller that way.
This doubled chainging is a bit clumsy, but I think it is worthwhile
because it allows a *lot* of good things to subsequently happen. In this
commit, there are many `mut` qualifiers removed in places where
diagnostics are emitted without being modified. In subsequent commits:
- chaining can be used more, making the code more concise;
- more use of chaining also permits the removal of redundant diagnostic
APIs like `struct_err_with_code`, which can be replaced easily with
`struct_err` + `code_mv`;
- `emit_without_diagnostic` can be removed, which simplifies a lot of
machinery, removing the need for `DiagnosticBuilderState`.
rework `-Zverbose`
implements the changes described in https://github.com/rust-lang/compiler-team/issues/706
the first commit is only a name change from `-Zverbose` to `-Zverbose-internals` and does not change behavior. the second commit changes diagnostics.
possible follow up work:
- `ty::pretty` could print more info with `--verbose` than it does currently. `-Z verbose-internals` shows too much info in a way that's not helpful to users. michael had ideas about this i didn't fully understand: https://rust-lang.zulipchat.com/#narrow/stream/233931-t-compiler.2Fmajor-changes/topic/uplift.20some.20-Zverbose.20calls.20and.20rename.20to.E2.80.A6.20compiler-team.23706/near/408984200
- `--verbose` should imply `-Z write-long-types-to-disk=no`. the code in `ty_string_with_limit` should take `--verbose` into account (apparently this affects `Ty::sort_string`, i'm not familiar with this code). writing a file to disk should suggest passing `--verbose`.
r? `@compiler-errors` cc `@estebank`
Instead of allowing `rustc::potential_query_instability` on the whole
crate we go over each lint and allow it individually if it is safe to
do. Turns out there were no instances of this lint in this crate.
They're not used in `rustc_session`, and `rustc_metadata` is a more
obvious location.
`MetadataLoader` was originally put into `rustc_session` in #41565 to
avoid a dependency on LLVM, but things have changed a lot since then and
that's no longer relevant, e.g. `rustc_codegen_llvm` depends on
`rustc_metadata`.
Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.
Emit smir
This adds ability to `-Zunpretty=smir` and get smir output of a Rust file, this is obliviously pretty basic compared to `mir` output but I think we could iteratively improve it, and even at this state this is useful for us.
r? ``@celinval``
I find `Compilation::and_then` hard to read. This commit removes it,
simplifying the control flow in `run_compiler`, and reducing the number
of lines of code.
In particular, `list_metadata` and `process_try_link` (renamed `rlink`)
are now only called if the relevant condition is true, rather than that
condition being checked within the function.
Currently we have an inconsistency between the "input" and "no input"
cases:
- no input: `rustc --print=sysroot -Whelp` prints the lint help.
- input: `rustc --print=sysroot -Whelp a.rs` prints the sysroot.
It makes sense to print the lint help in both cases, because that's what
happens with `--help`/`-Zhelp`/`-Chelp`.
In fact, the `describe_lints` in the "input" case happens amazingly
late, after *parsing*. This is because, with plugins, lints used to be
registered much later, when the global context was created. But #117649
moved lint registration much earlier, during session construction.
So this commit moves the `describe_lints` call to a single spot for both
for both the "input" and "no input" cases, as early as possible. This is
still not as early as `--help`/`-Zhelp`/`-Chelp`, because `-Whelp` must
wait until the session is constructed.
`rustc_driver_impl::run_compiler` currently has two
`interface::run_compiler` calls: one for the "no input" case, and one
for the normal case.
This commit merges the former into the latter, which makes the control
flow easier to read and avoids some duplication.
It also makes it clearer that the "no input" case will describe lints
before printing crate info, while the normal case does it in the reverse
order. Possibly a bug?
Yes, its type is `EarlyErrorHandler`, but there is another value of that
type later on in the function called `handler` that is initialized with
`sopts.error_format`. So `default_handler` is a better name because it
clarifies that it is initialized with `ErrorOutputType::default()`.
This was made possible by the removal of plugin support, which
simplified lint store creation.
This simplifies the places in rustc and rustdoc that call
`describe_lints`, which are early on. The lint store is now built before
those places, so they don't have to create their own lint store for
temporary use, they can just use the main one.
rustc_log: provide a way to init logging based on the values, not names, of the env vars
Miri wants to affect how rustc does logging. So far this required setting environment variables before calling `rustc_driver::init_rustc_env_logger`. However, `set_var` is a function one should really [avoid calling](https://github.com/rust-lang/rust/issues/90308), so this adds the necessary APIs to rustc such that Miri can just pass it the *values* of all the log-relevant environment variables, rather than having to change the global environment.