They've been deprecated for four years.
This commit includes the following changes.
- It eliminates the `rustc_plugin_impl` crate.
- It changes the language used for lints in
`compiler/rustc_driver_impl/src/lib.rs` and
`compiler/rustc_lint/src/context.rs`. External lints are now called
"loaded" lints, rather than "plugins" to avoid confusion with the old
plugins. This only has a tiny effect on the output of `-W help`.
- E0457 and E0498 are no longer used.
- E0463 is narrowed, now only relating to unfound crates, not plugins.
- The `plugin` feature was moved from "active" to "removed".
- It removes the entire plugins chapter from the unstable book.
- It removes quite a few tests, mostly all of those in
`tests/ui-fulldeps/plugin/`.
Closes#29597.
- Sort dependencies and features sections.
- Add `tidy` markers to the sorted sections so they stay sorted.
- Remove empty `[lib`] sections.
- Remove "See more keys..." comments.
Excluded files:
- rustc_codegen_{cranelift,gcc}, because they're external.
- rustc_lexer, because it has external use.
- stable_mir, because it has external use.
Implement rustc part of RFC 3127 trim-paths
This PR implements (or at least tries to) [RFC 3127 trim-paths](https://github.com/rust-lang/rust/issues/111540), the rustc part. That is `-Zremap-path-scope` with all of it's components/scopes.
`@rustbot` label: +F-trim-paths
Move `DepKind` to `rustc_query_system` and define it as `u16`
This moves the `DepKind` type to `rustc_query_system` where it's defined with an inner `u16` field. This decouples it from `rustc_middle` and is a step towards letting other crates define dep kinds. It also allows some type parameters to be removed. The `DepKind` trait is replaced with a `Deps` trait. That's used when some operations or information about dep kinds which is unavailable in `rustc_query_system` are still needed.
r? `@cjgillot`
Simplify/Optimize FileEncoder
FileEncoder is basically a BufWriter except that it exposes access to the not-written-to-yet region of the buffer so that some users can write directly to the buffer. This strategy is awesome because it lets us avoid calling memcpy for small copies, but the previous strategy was based on the writer accessing a `&mut [MaybeUninit<u8>; N]` and returning a `&[u8]` which is an API which currently mandates the use of unsafe code, making that interface in general not that appealing.
So this PR cleans up the FileEncoder implementation and builds on that general idea of direct buffer access in order to prevent `memcpy` calls in a few key places when encoding the dep graph and rmeta tables. The interface used here is now 100% safe, but with the caveat that internally we need to avoid trusting the number of bytes that the provided function claims to have written.
The original primary objective of this PR was to clean up the FileEncoder implementation so that the fix for the following issues would be easy to implement. The fix for these issues is to correctly update self.buffered even when writes fail, which I think it's easy to verify manually is now done, because all the FileEncoder methods are small.
Fixes https://github.com/rust-lang/rust/issues/115298
Fixes https://github.com/rust-lang/rust/issues/114671
Fixes https://github.com/rust-lang/rust/issues/114045
Fixes https://github.com/rust-lang/rust/issues/108100
Fixes https://github.com/rust-lang/rust/issues/106787
Make `.rmeta` file in `dep-info` have correct name (`lib` prefix)
Since `filename_for_metadata()` and
`OutputFilenames::path(OutputType::Metadata)` had different logic for the name of the metadata file, the `.d` file contained a file name different from the actual name used. Share the logic to fix the out-of-sync name.
Without this fix, the `.d` file contained
dash-separated_something-extra.rmeta: dash-separated.rs
instead of
libdash_separated_something-extra.rmeta: dash-separated.rs
which is the name of the file that is actually written by the compiler.
Worth noting: It took me several iterations to get all tests to pass, so I am relatively confident that this PR does not break anything.
Closes#68839
Encode only MIR reachable from other crates
Only reachable items might participate in the code generation in the
downstream crates. Omit redundant optimized MIR of unreachable items
from a crate metadata.
Additionally, include reachable closures in reachable set, so that
unreachable closures can be omitted on the same basis.
Only reachable items might participate in the code generation in the
downstream crates. Omit redundant optimized MIR of unreachable items
from a crate metadata.
Additionally, include reachable closures in reachable set, so that
unreachable closures can be omitted on the same basis.
Since `filename_for_metadata()` and
`OutputFilenames::path(OutputType::Metadata)` had different logic for
the name of the metadata file, the `.d` file contained a file name
different from the actual name used. Share the logic to fix the
out-of-sync name.
Closes 68839.
Skip rendering metadata strings from include_str!/include_bytes!
The const rendering code in rustdoc completely ignores consts from expansions, but the compiler was rendering all consts. So some consts (namely those from `include_bytes!`) were rendered then ignored.
Most of the diff here is from moving `print_const_expr` from rustdoc into `rustc_hir_pretty` so that it can be used in rustdoc and when building rmeta files.
Adapt table sizes to the contents
This is an implementation of https://github.com/rust-lang/compiler-team/issues/666
The objective of this PR is to permit the rmeta format to accommodate larger crates that need offsets larger than a `u32` can store without compromising performance for crates that do not need such range. The second commit is a number of tiny optimization opportunities I noticed while looking at perf recordings of the first commit.
The rmeta tables need to have fixed-size elements to permit lazy random access. But the size only needs to be fixed _per table_, not per element type. This PR adds another `usize` to the table header which indicates the table element size. As each element of a table is set, we keep track of the widest encoded table value, then don't bother encoding all the unused trailing bytes on each value. When decoding table elements, we copy them to a full-width array if they are not already full-width.
`LazyArray` needs some special treatment. Most other values that are encoded in tables are indexes or offsets, and those tend to be small so we get to drop a lot of zero bytes off the end. But `LazyArray` encodes _two_ small values in a fixed-width table element: A position of the table and the length of the table. The treatment described above could trim zero bytes off the table length, but any nonzero length shields the position bytes from the optimization. To improve this, we interleave the bytes of position and length. This change is responsible for about half of the crate metadata win on many crates.
Fixes https://github.com/rust-lang/rust/issues/112934 (probably)
Fixes https://github.com/rust-lang/rust/issues/103607
rustc_interface: Dismantle `register_plugins` query
It did three independent things:
- Constructed `LintStore`
- Prepared incremental directories and dep graph
- Initialized some fields in `Session`
The `LintStore` construction (now `passes::create_lint_store`) is more or less left in place.
The incremental stuff is now moved into `fn dep_graph_future`.
This helps us to start loading the dep graph a bit earlier.
The `Session` field initialization is moved to tcx construction point.
Now that tcx is constructed early these fields don't even need to live in `Session`, they can live in tcx instead and be initialized at its creation (see the FIXME).
Three previously existing `rustc_interface` queries are de-querified (`register_plugins`, `dep_graph_future`, `dep_graph`) because they are only used locally in `fn global_ctxt` and their results don't need to be saved elsewhere.
On the other hand, `crate_types` and `stable_crate_id` are querified.
They are used from different places and their use is very similar to the existing `crate_name` query in this regard.
Suggest `x build library` for a custom toolchain that fails to load `core`
Fixes#113222
The nicer suggestion for dev-channel won't be emitted if `-Z ui-testing` enabled. IMO, this is acceptable for now.
Don't install default projection bound for return-position `impl Trait` in trait methods with no body
This ensures that we never try to project to an opaque type in a trait method that has no body to infer its hidden type, which means we never later call `type_of` on that opaque. This is because opaque types try to reveal their hidden type when proving auto traits.
I thought about this a lot, and I think this is a fix that's less likely to introduce other strange downstream ICEs than #113461.
Fixes#113434
r? `@spastorino`
fix intra-doc links on nested `use` and `extern crate` items
This PR fixes two rustdoc ICEs that happen if there are any intra-doc links on nested `use` or `extern crate` items, for example:
```rust
/// Re-export [`fmt`] and [`io`].
pub use std::{fmt, io}; // "nested" use = use with braces
/// Re-export [`std`].
pub extern crate std;
```
Nested use items were incorrectly considered private and therefore didn't have their intra-doc links resolved. I fixed this by always resolving intra-doc links for nested `use` items that are declared `pub`.
<details>
During AST->HIR lowering, nested `use` items are desugared like this:
```rust
pub use std::{}; // "list stem"
pub use std::fmt;
pub use std::io;
```
Each of these HIR nodes has it's own effective visibility and the list stem is always considered private.
To check the effective visibility of an AST node, the AST node is mapped to a HIR node with `Resolver::local_def_id`, which returns the (private) list stem for nested use items.
</details>
For `extern crate`, there was a hack in rustdoc that stored the `DefId` of the crate itself in the cleaned item, instead of the `DefId` of the `extern crate` item. This made rustdoc look at the resolved links of the extern crate's crate root instead of the `extern crate` item. I've removed this hack and instead translate the `DefId` in the appropriate places.
As as side effect of fixing `extern crate`, i've turned
```rust
#[doc(masked)]
extern crate self as _;
```
into a no-op instead of hiding all trait impls. Proper verification for `doc(masked)` is included as a bonus.
fixes https://github.com/rust-lang/rust/issues/113896
Verify that all crate sources are in sync
This ensures that rustc will not attempt to link against a cdylib as if it is a rust dylib when an rlib for the same crate is available. Previously rustc didn't actually check if any further formats of a crate which has been loaded are of the same version and if they are actually valid. This caused a cdylib to be interpreted as rust dylib as soon as the corresponding rlib was loaded. As cdylibs don't export any rust symbols, linking would fail if rustc decides to link against the cdylib rather than the rlib.
Two crates depended on the previous behavior by separately compiling a test crate as both rlib and dylib. These have been changed to capture their original spirit to the best of my ability while still working when rustc verifies that all crates are in sync. It is unlikely that build systems depend on the current behavior and in any case we are taking a lot of measures to ensure that any change to either the source or the compilation options (including crate type) results in rustc rejecting it as incompatible. We merely didn't do this check here for now obsolete perf reasons.
Fixes https://github.com/rust-lang/rust/issues/10786
Fixes https://github.com/rust-lang/rust/issues/82151
Fixes https://github.com/rust-lang/rust/issues/82972
Closes https://github.com/bevy-cheatbook/bevy-cheatbook/issues/114
Rollup of 7 pull requests
Successful merges:
- #113444 (add tests for alias bound preference)
- #113716 (Add the `no-builtins` attribute to functions when `no_builtins` is applied at the crate level.)
- #113754 (Simplify native_libs query)
- #113765 (Make it clearer that edition functions are `>=`, not `==`)
- #113774 (Improve error message when closing bracket interpreted as formatting fill character)
- #113785 (Fix invalid display of inlined re-export when both local and foreign items are inlined)
- #113803 (Fix inline_const with interpolated block)
r? `@ghost`
`@rustbot` modify labels: rollup
This ensures that rustc will not attempt to link against a cdylib as if
it is a rust dylib when an rlib for the same crate is available.
Previously rustc didn't actually check if any further formats of a
crate which has been loaded are of the same version and if they are
actually valid. This caused a cdylib to be interpreted as rust dylib as
soon as the corresponding rlib was loaded. As cdylibs don't export any
rust symbols, linking would fail if rustc decides to link against the
cdylib rather than the rlib.
Two crates depended on the previous behavior by separately compiling a
test crate as both rlib and dylib. These have been changed to capture
their original spirit to the best of my ability while still working
when rustc verifies that all crates are in sync. It is unlikely that
build systems depend on the current behavior and in any case we are
taking a lot of measures to ensure that any change to either the source
or the compilation options (including crate type) results in rustc
rejecting it as incompatible. We merely didn't do this check here for
now obsolete perf reasons.
Use u64 for incr comp allocation offsets
Fixes https://github.com/rust-lang/rust/issues/76037
Fixes https://github.com/rust-lang/rust/issues/95780
Fixes https://github.com/rust-lang/rust/issues/111613
These issues are all reporting ICEs caused by using `u32` to store offsets to allocations in the incremental compilation cache. This PR aims to lift that limitation by changing the offset type in question to `u64`.
There are two perf runs in this PR. The first reports a regression, and the second does not. The changes are the same in both. I rebased the PR then did the second perf run because I noticed that the primary regression in it was very commonly seen in spurious regression reports.
I do not know what the perf run will report when this is merged. I would not be surprised to see regression or neutral, but the cachegrind diffs for the regression point at `try_mark_previous_green` which is a common source of inexplicable regressions and I don't think should be perturbed by this PR.
I'm not opposed to adding a regression test such as
```rust
fn main() {
println!("{}", [37; 1 << 30].len());
}
```
But that program takes 1 minute to compile and consumes 4.6 GB of memory then writes that much to disk. Is that a concerning amount of resource use for a test?
r? `@nnethercote`
Make it clearer that we're just checking for an RPITIT
Tiny nit to use `is_impl_trait_in_trait` more, to make it clearer that we're just checking whether a def-id is an RPITIT, rather than doing something meaningful with the `opt_rpitit_info`.
r? `@spastorino`
Make RPITITs assume/require their parent method's predicates
Removes a FIXME from the `param_env` query where we were manually adding the parent function's predicates to the RPITIT's assumptions.
r? `@spastorino`
This reverts commit b913f5593d.
CI builds with profile=nightly, causing different test output.
Making the output depend on the release channel was not a great idea.
Refactor metadata emission to avoid visiting HIR
This PR refactors metadata emission to be based on tables and iteration over definitions.
In a first part, this PR moves information from the `EntryKind` enum to tables, until removing the `EntryKind` enum.
In a second part, the iteration scheme is refactored to avoid fetching HIR unless strictly necessary.
r? `@ghost`
Various impl trait in assoc tys cleanups
r? `@compiler-errors`
All commits except for the last are pure refactorings. 274dab5bd658c97886a8987340bf50ae57900c39 allows struct fields to participate in deciding whether a function has an opaque in its signature.
best reviewed commit by commit
Add a fully fledged `Clause` type, rename old `Clause` to `ClauseKind`
Does two basic things before I put up a more delicate set of PRs (along the lines of #112714, but hopefully much cleaner) that migrate existing usages of `ty::Predicate` to `ty::Clause` (`predicates_of`/`item_bounds`/`ParamEnv::caller_bounds`).
1. Rename `Clause` to `ClauseKind`, so it's parallel with `PredicateKind`.
2. Add a new `Clause` type which is parallel to `Predicate`.
* This type exposes `Clause::kind(self) -> Binder<'tcx, ClauseKind<'tcx>>` which is parallel to `Predicate::kind` 😸
The new `Clause` type essentially acts as a newtype wrapper around `Predicate` that asserts that it is specifically a `PredicateKind::Clause`. Turns out from experimentation[^1] that this is not negative performance-wise, which is wonderful, since this a much simpler design than something that requires encoding the discriminant into the alignment bits of a predicate kind, or something else like that...
r? ``@lcnr`` or ``@oli-obk``
[^1]: https://github.com/rust-lang/rust/pull/112714#issuecomment-1595653910
Write to stdout if `-` is given as output file
With this PR, if `-o -` or `--emit KIND=-` is provided, output will be written to stdout instead. Binary output (those of type `obj`, `llvm-bc`, `link` and `metadata`) being written this way will result in an error unless stdout is not a tty. Multiple output types going to stdout will trigger an error too, as they will all be mixded together.
This implements https://github.com/rust-lang/compiler-team/issues/431
The idea behind the changes is to introduce an `OutFileName` enum that represents the output - be it a real path or stdout - and to use this enum along the code paths that handle different output types.
Remember names of `cfg`-ed out items to mention them in diagnostics
# Examples
## `serde::Deserialize` without the `derive` feature (a classic beginner mistake)
I had to slightly modify serde so that it uses explicit re-exports instead of a glob re-export. (Update: a serde PR was merged that adds the manual re-exports)
```
error[E0433]: failed to resolve: could not find `Serialize` in `serde`
--> src/main.rs:1:17
|
1 | #[derive(serde::Serialize)]
| ^^^^^^^^^ could not find `Serialize` in `serde`
|
note: crate `serde` has an item named `Serialize` but it is inactive because its cfg predicate evaluated to false
--> /home/gh-Nilstrieb/.cargo/registry/src/index.crates.io-6f17d22bba15001f/serde-1.0.160/src/lib.rs:343:1
|
343 | #[cfg(feature = "serde_derive")]
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
344 | pub use serde_derive::{Deserialize, Serialize};
| ^^^^^^^^^
= note: the item is gated behind the `serde_derive` feature
= note: see https://doc.rust-lang.org/cargo/reference/features.html for how to activate a crate's feature
```
(the suggestion is not ideal but that's serde's fault)
I already tested the metadata size impact locally by compiling the `windows` crate without any features. `800k` -> `809k`
r? `@ghost`
- remove useless commands from test Makefile
- do not unnecessarily remove metadata temporary files because they'll be managed by MaybeTempDir
- remove unused FailedRemove error introduced by this PR
If `-o -` or `--emit KIND=-` is provided, output will be written
to stdout instead. Binary output (`obj`, `llvm-bc`, `link` and
`metadata`) being written this way will result in an error unless
stdout is not a tty. Multiple output types going to stdout will
trigger an error too, as they will all be mixded together.
`#[cfg]`s are frequently used to gate crate content behind cargo
features. This can lead to very confusing errors when features are
missing. For example, `serde` doesn't have the `derive` feature by
default. Therefore, `serde::Serialize` fails to resolve with a generic
error, even though the macro is present in the docs.
This commit adds a list of all stripped item names to metadata. This is
filled during macro expansion and then, through a fed query, persisted
in metadata. The downstream resolver can then access the metadata to
look at possible candidates for mentioning in the errors.
This slightly increases metadata (800k->809k for the feature-heavy
windows crate), but not enough to really matter.
Only rewrite valtree-constants to patterns and keep other constants opaque
Now that we can reliably fall back to comparing constants with `PartialEq::eq` to the match scrutinee, we can
1. eagerly try to convert constants to valtrees
2. then deeply convert the valtree to a pattern
3. if the to-valtree conversion failed, create an "opaque constant" pattern.
This PR specifically avoids any behavioral changes or major cleanups. What we can now do as follow ups is
* move the two remaining call sites to `destructure_mir_constant` off that query
* make valtree to pattern conversion infallible
* this needs to be done after careful analysis of the effects. There may be user visible changes from that.
based on https://github.com/rust-lang/rust/pull/111768
`EarlyBinder::new` -> `EarlyBinder::bind`
for consistency with `Binder::bind`. it may make sense to also add `EarlyBinder::dummy` in places where we know that no parameters exist, but I left that out of this PR.
r? `@jackh726` `@kylematsuda`
Load only the crate header for `locator::crate_matches`
Previously, we used the following info to determine whether to load the crate:
1. The METADATA_HEADER, which includes a METADATA_VERSION constant
2. The embedded rustc version
3. Various metadata in the `CrateRoot`, including the SVH
This worked ok most of the time. Unfortunately, when building locally the rustc version is always
the same because `omit-git-hash` is on by default. That meant that we depended only on 1 and 3, and
we are not very good about bumping METADATA_VERSION (it's currently at 7) so in practice we were
only depending on 3. `CrateRoot` is a very large struct and changes somewhat regularly, so this led
to a steady stream of crashes from trying to load it.
Change the logic to add an intermediate step between 2 and 3: introduce a new `CrateHeader` struct
that contains only the minimum info needed to decide whether the crate should be loaded or not. That
avoids having to load all of `CrateRoot`, which in practice means we should crash much less often.
Note that this works because the SVH should be different between any two dependencies, even if the
compiler has changed, because we use `-Zbinary-dep-depinfo` in bootstrap. See
https://github.com/rust-lang/rust/pull/111329#issuecomment-1538303474 for more details about how the
original crash happened.
Previously, we used the following info to determine whether to load the crate:
1. The METADATA_HEADER, which includes a METADATA_VERSION constant
2. The embedded rustc version
3. Various metadata in the `CrateRoot`, including the SVH
This worked ok most of the time. Unfortunately, when building locally the rustc version is always
the same because `omit-git-hash` is on by default. That meant that we depended only on 1 and 3, and
we are not very good about bumping METADATA_VERSION (it's currently at 7) so in practice we were
only depending on 3. `CrateRoot` is a very large struct and changes somewhat regularly, so this led
to a steady stream of crashes from trying to load it.
Change the logic to add an intermediate step between 2 and 3: introduce a new `CrateHeader` struct
that contains only the minimum info needed to decide whether the crate should be loaded or not. That
avoids having to load all of `CrateRoot`, which in practice means we should crash much less often.
Note that this works because the SVH should be different between any two dependencies, even if the
compiler has changed, because we use `-Zbinary-dep-depinfo` in bootstrap. See
https://github.com/rust-lang/rust/pull/111329#issuecomment-1538303474 for more details about how the
original crash happened.
Support #[global_allocator] without the allocator shim
This makes it possible to use liballoc/libstd in combination with `--emit obj` if you use `#[global_allocator]`. This is what rust-for-linux uses right now and systemd may use in the future. Currently they have to depend on the exact implementation of the allocator shim to create one themself as `--emit obj` doesn't create an allocator shim.
Note that currently the allocator shim also defines the oom error handler, which is normally required too. Once `#![feature(default_alloc_error_handler)]` becomes the only option, this can be avoided. In addition when using only fallible allocator methods and either `--cfg no_global_oom_handling` for liballoc (like rust-for-linux) or `--gc-sections` no references to the oom error handler will exist.
To avoid this feature being insta-stable, you will have to define `__rust_no_alloc_shim_is_unstable` to avoid linker errors.
(Labeling this with both T-compiler and T-lang as it originally involved both an implementation detail and had an insta-stable user facing change. As noted above, the `__rust_no_alloc_shim_is_unstable` symbol requirement should prevent unintended dependence on this unstable feature.)
Fix dependency tracking for debugger visualizers
This PR fixes dependency tracking for debugger visualizer files by changing the `debugger_visualizers` query to an `eval_always` query that scans the AST while it is still available. This way the set of visualizer files is already available when dep-info is emitted. Since the query is turned into an `eval_always` query, dependency tracking will now reliably detect changes to the visualizer script files themselves.
TODO:
- [x] perf.rlo
- [x] Needs a bit more documentation in some places
- [x] Needs regression test for the incr. comp. case
Fixes https://github.com/rust-lang/rust/issues/111226
Fixes https://github.com/rust-lang/rust/issues/111227
Fixes https://github.com/rust-lang/rust/issues/111295
r? `@wesleywiser`
cc `@gibbyfree`
Only depend on CFG_VERSION in rustc_interface
This avoids having to rebuild the whole compiler on each commit when `omit-git-hash = false`.
cc https://github.com/rust-lang/rust/issues/76720 - this won't fix it, and I'm not suggesting we turn this on by default, but it will make it less painful for people who do have `omit-git-hash` on as a workaround.
Merge query property modules into one
This merges all the query modules that defines types into a single module per query with a normal naming convention for type aliases.
r? ``@cjgillot``
Handle error body in generator layout
Fixes#111468
I feel like making this query return `Option<GeneratorLayout>` might be better but had some issues with that approach
Error message all end up passing into a function as an `impl
Into<{D,Subd}iagnosticMessage>`. If an error message is creatd as
`&format("...")` that means we allocate a string (in the `format!`
call), then take a reference, and then clone (allocating again) the
reference to produce the `{D,Subd}iagnosticMessage`, which is silly.
This commit removes the leading `&` from a lot of these cases. This
means the original `String` is moved into the
`{D,Subd}iagnosticMessage`, avoiding the double allocations. This
requires changing some function argument types from `&str` to `String`
(when all arguments are `String`) or `impl
Into<{D,Subd}iagnosticMessage>` (when some arguments are `String` and
some are `&str`).
Introduce `DynSend` and `DynSync` auto trait for parallel compiler
part of parallel-rustc #101566
This PR introduces `DynSend / DynSync` trait and `FromDyn / IntoDyn` structure in rustc_data_structure::marker. `FromDyn` can dynamically check data structures for thread safety when switching to parallel environments (such as calling `par_for_each_in`). This happens only when `-Z threads > 1` so it doesn't affect single-threaded mode's compile efficiency.
r? `@cjgillot`
Apply simulate-remapped-rust-src-base even if remap-debuginfo is set in config.toml
This is really a mess. Here is the situation before this change:
- UI tests depend on not having `rust-src` available. In particular, <3f374128ee/tests/ui/tuple/wrong_argument_ice.stderr (L7-L8)> is depending on the `note` being a single line and not showing the source code.
- When `download-rustc` is disabled, we pass `-Zsimulate-remapped-rust-src-base=/rustc/FAKE_PREFIX` `-Ztranslate-remapped-path-to-local-path=no`, which changes the diagnostic to something like ` --> /rustc/FAKE_PREFIX/library/alloc/src/collections/vec_deque/mod.rs:1657:12`
- When `download-rustc` is enabled, we still pass those flags, but they no longer have an effect. Instead rustc emits diagnostic paths like this: ` --> /rustc/39c6804b92aa202369e402525cee329556bc1db0/library/alloc/src/collections/vec_deque/mod.rs:1657:12`. Notice how there's a real commit and not `FAKE_PREFIX`. This happens because we set `CFG_VIRTUAL_RUST_SOURCE_BASE_DIR` during bootstrapping for CI artifacts, and rustc previously didn't allow for `simulate-remapped` to affect paths that had already been remapped.
- Pietro noticed this and decided the right thing was to normalize `/rustc/<commit>` to `$SRC_DIR` in compiletest: 470423c3d2
- After my change to `x test core`, which rebuilds stage 2 std from source so `build/stage2-std` and `build/stage2` use the same `.rlib` metadata, the compiler suddenly notices it has sources for `std` available and prints those in the diagnostic, causing the test to fail.
This changes `simulate-remapped-rust-src-base` to support remapping paths that have already been remapped, unblocking download-rustc.
Unfortunately, although this fixes the specific problem for
download-rustc, it doesn't seem to affect all the compiler's
diagnostics. In particular, various `mir-opt` tests are failing to
respect `simulate-remapped-path-prefix` (I looked into fixing this but
it seems non-trivial). As a result, we can't remove the normalization in
compiletest that maps `/rustc/<commit>` to `$SRC_DIR`, so this change is
currently untested anywhere except locally.
You can test this locally yourself by setting `rust.remap-debuginfo = true`, running any UI test with `ERROR` annotations, then rerunning the test manually with a dev toolchain to verify it prints `/rustc/FAKE_PREFIX`, not `/rustc/1.71.0`.
Helps with https://github.com/rust-lang/rust/issues/110352.
Encode `VariantIdx` so we can decode ADT variants in the right order
As far as I can tell, we don't guarantee anything about the ordering of `DefId`s and module children...
The code that motivated this PR (#111483) looks something like:
```rust
#[derive(Protocol)]
pub enum Data {
#[protocol(discriminator(0x00))]
Disconnect(Disconnect),
EncryptionRequest,
/* more variants... */
}
```
The specific macro ([`protocol`](https://github.com/dylanmckay/protocol)) doesn't really matter, but as far as I can tell (from calls to `build_reduced_graph`), the presence of that `#[protocol(..)]` helper attribute causes the def-id of the `Disconnect` enum variant to be collected *after* its siblings, and it shows up after the other variants in `module_children`.
When we decode the variants for `Data` in a child crate (an example test, in this case), this means that the `Disconnect` variant is moved to the end of the variants list, and all of the other variants now have incorrect relative discriminant data, causing the ICE.
This PR fixes this by sorting manually by variant index after they are decoded. I guess there are alternative ways of fixing this, such as not reusing `module_children_non_reexports` to encode the order-sensitive ADT variants, or to do some sorting in `rustc_resolve`... but none of those seemed particularly satisfying either.
~I really struggled to create a reproduction here -- it required at least 3 crates, one of which is a proc macro, and then some code to actually compute discriminants in the child crate... Needless to say, I failed to repro this in a test, but I can confirm that it fixes the regression in #111483.~ Test exists now.
r? `@petrochenkov` but feel free to reassign. ~Again, sorry for no test, but I hope the explanation at least suggests why a fix like this is likely necessary.~ Feedback is welcome.
Switch to `EarlyBinder` for `thir_abstract_const` query
Part of the work to finish https://github.com/rust-lang/rust/issues/105779.
This PR adds `EarlyBinder` to the return type of the `thir_abstract_const` query and removes `bound_abstract_const`.
r? `@compiler-errors`
Support linking to rust dylib with --crate-type staticlib
This allows for example dynamically linking libstd, while statically linking the user crate into an executable or C dynamic library. For this two unstable flags (`-Z staticlib-allow-rdylib-deps` and `-Z staticlib-prefer-dynamic`) are introduced. Without the former you get an error. The latter is the equivalent to `-C prefer-dynamic` for the staticlib crate type to indicate that dynamically linking is preferred when both options are available, like for libstd. Care must be taken to ensure that no crate ends up being merged into two distinct staticlibs that are linked together. Doing so will cause a linker error at best and undefined behavior at worst. In addition two distinct staticlibs compiled by different rustc may not be combined under any circumstances due to some rustc private symbols not being mangled.
To successfully link a staticlib, `--print native-static-libs` can be used while compiling to ask rustc for the linker flags necessary when linking the staticlib. This is an existing flag which previously only listed native libraries. It has been extended to list rust dylibs too. Trying to locate libstd yourself to link against it is not supported and may break if for example the libstd of multiple rustc versions are put in the same directory.
For an example on how to use this see the `src/test/run-make-fulldeps/staticlib-dylib-linkage/` test.
Add `force` option for `--extern` flag
When `--extern force:foo=libfoo.so` is passed to `rustc` and `foo` is not actually used in the crate, ~inject an `extern crate foo;` statement into the AST~ force it to be resolved anyway in `CrateLoader::postprocess()`. This allows you to, for instance, inject a `#[panic_handler]` implementation into a `#![no_std]` crate without modifying its source so that it can be built as a `dylib`. It may also be useful for `#![panic_runtime]` or `#[global_allocator]`/`#![default_lib_allocator]` implementations.
My work previously involved integrating Rust into an existing C/C++ codebase which was built with Buck and shipped on, among other platforms, Android. When targeting Android, Buck builds all "native" code with shared linkage* so it can be loaded from Java/Kotlin. My project was not itself `#![no_std]`, but many of our dependencies were, and they would fail to build with shared linkage due to a lack of a panic handler. With this change, that project can add the new `force` option to the `std` dependency it already explicitly provides to every crate to solve this problem.
*This is an oversimplification - Buck has a couple features for aggregating dependencies into larger shared libraries, but none that I think sustainably solve this problem.
~The AST injection happens after macro expansion around where we similarly inject a test harness and proc-macro harness. The resolver's list of actually-used extern flags is populated during macro expansion, and if any of our `--extern` arguments have the `force` option and weren't already used, we inject an `extern crate` statement for them. The injection logic was added in `rustc_builtin_macros` as that's where similar injections for tests, proc-macros, and std/core already live.~
(New contributor - grateful for feedback and guidance!)
Stabilize raw-dylib, link_ordinal, import_name_type and -Cdlltool
This stabilizes the `raw-dylib` feature (#58713) for all architectures (i.e., `x86` as it is already stable for all other architectures).
Changes:
* Permit the use of the `raw-dylib` link kind for x86, the `link_ordinal` attribute and the `import_name_type` key for the `link` attribute.
* Mark the `raw_dylib` feature as stable.
* Stabilized the `-Zdlltool` argument as `-Cdlltool`.
* Note the path to `dlltool` if invoking it failed (we don't need to do this if `dlltool` returns an error since it prints its path in the error message).
* Adds tests for `-Cdlltool`.
* Adds tests for being unable to find the dlltool executable, and dlltool failing.
* Fixes a bug where we were checking the exit code of dlltool to see if it failed, but dlltool always returns 0 (indicating success), so instead we need to check if anything was written to `stderr`.
NOTE: As previously noted (https://github.com/rust-lang/rust/pull/104218#issuecomment-1315895618) using dlltool within rustc is temporary, but this is not the first time that Rust has added a temporary tool use and argument: https://github.com/rust-lang/rust/pull/104218#issuecomment-1318720482
Big thanks to ``````@tbu-`````` for the first version of this PR (#104218)
Encode def span for foreign return-position `impl Trait` in trait
Fixes#111031, yet another def-span encoding issue :/
Includes a smaller repro than the issue, but I can confirm it ICEs:
```
query stack during panic:
#0 [def_span] looking up span for `rpitit::Foo::bar::{opaque#0}`
#1 [object_safety_violations] determining object safety of trait `rpitit::Foo`
#2 [check_is_object_safe] checking if trait `rpitit::Foo` is object safe
#3 [typeck] type-checking `main`
#4 [used_trait_imports] finding used_trait_imports `main`
#5 [analysis] running analysis passes on this crate
```
Luckily since this only affects nightly, this desn't need to be backported.
In #110927 the encode/decode methods for `i8`, `char`, `bool`, and `str`
were made inherent. This commit removes some unnecessary implementations
of these methods that were missed in that PR.
Currently a `{D,Subd}iagnosticMessage` can be created from any type that
impls `Into<String>`. That includes `&str`, `String`, and `Cow<'static,
str>`, which are reasonable. It also includes `&String`, which is pretty
weird, and results in many places making unnecessary allocations for
patterns like this:
```
self.fatal(&format!(...))
```
This creates a string with `format!`, takes a reference, passes the
reference to `fatal`, which does an `into()`, which clones the
reference, doing a second allocation. Two allocations for a single
string, bleh.
This commit changes the `From` impls so that you can only create a
`{D,Subd}iagnosticMessage` from `&str`, `String`, or `Cow<'static,
str>`. This requires changing all the places that currently create one
from a `&String`. Most of these are of the `&format!(...)` form
described above; each one removes an unnecessary static `&`, plus an
allocation when executed. There are also a few places where the existing
use of `&String` was more reasonable; these now just use `clone()` at
the call site.
As well as making the code nicer and more efficient, this is a step
towards possibly using `Cow<'static, str>` in
`{D,Subd}iagnosticMessage::{Str,Eager}`. That would require changing
the `From<&'a str>` impls to `From<&'static str>`, which is doable, but
I'm not yet sure if it's worthwhile.
Rewrite MemDecoder around pointers not a slice
This is basically https://github.com/rust-lang/rust/pull/109910 but I'm being a lot more aggressive. The pointer-based structure means that it makes a lot more sense to absorb more complexity into `MemDecoder`, most of the diff is just complexity moving from one place to another.
The primary argument for this structure is that we only incur a single bounds check when doing multi-byte reads from a `MemDecoder`. With the slice-based implementation we need to do those with `data[position..position + len]` , which needs to account for `position + len` wrapping. It would be possible to dodge the first bounds check if we stored a slice that starts at `position`, but that would require updating the pointer and length on every read.
This PR also embeds the failure path in a separate function, which means that this PR should subsume all the perf wins observed in https://github.com/rust-lang/rust/pull/109867.
Switch to `EarlyBinder` for `explicit_item_bounds`
Part of the work to finish https://github.com/rust-lang/rust/issues/105779.
This PR adds `EarlyBinder` to the return type of the `explicit_item_bounds` query and removes `bound_explicit_item_bounds`.
r? `@compiler-errors` (hope it's okay to request you, since you reviewed #110299 and #110498😃)
This is really a mess. Here is the situation before this change:
- UI tests depend on not having `rust-src` available. In particular, <3f374128ee/tests/ui/tuple/wrong_argument_ice.stderr (L7-L8)> is depending on the `note` being a single line and not showing the source code.
- When `download-rustc` is disabled, we pass `-Zsimulate-remapped-rust-src-base=/rustc/FAKE_PREFIX` `-Ztranslate-remapped-path-to-local-path=no`, which changes the diagnostic to something like ` --> /rustc/FAKE_PREFIX/library/alloc/src/collections/vec_deque/mod.rs:1657:12`
- When `download-rustc` is enabled, we still pass those flags, but they no longer have an effect. Instead rustc emits diagnostic paths like this: ` --> /rustc/39c6804b92aa202369e402525cee329556bc1db0/library/alloc/src/collections/vec_deque/mod.rs:1657:12`. Notice how there's a real commit and not `FAKE_PREFIX`. This happens because we set `CFG_VIRTUAL_RUST_SOURCE_BASE_DIR` during bootstrapping for CI artifacts, and rustc previously didn't allow for `simulate-remapped` to affect paths that had already been remapped.
- Pietro noticed this and decided the right thing was to normalize `/rustc/<commit>` to `$SRC_DIR` in compiletest: 470423c3d2
- After my change to `x test core`, which rebuilds stage 2 std from source so `build/stage2-std` and `build/stage2` use the same `.rlib` metadata, the compiler suddenly notices it has sources for `std` available and prints those in the diagnostic, causing the test to fail.
This changes `simulate-remapped-rust-src-base` to support remapping paths that have already been remapped, unblocking download-rustc.
Unfortunately, although this fixes the specific problem for
download-rustc, it doesn't seem to affect all the compiler's
diagnostics. In particular, various `mir-opt` tests are failing to
respect `simulate-remapped-path-prefix` (I looked into fixing this but
it seems non-trivial). As a result, we can't remove the normalization in
compiletest that maps `/rustc/<commit>` to `$SRC_DIR`, so this change is
currently untested anywhere except locally.
Report allocation errors as panics
OOM is now reported as a panic but with a custom payload type (`AllocErrorPanicPayload`) which holds the layout that was passed to `handle_alloc_error`.
This should be review one commit at a time:
- The first commit adds `AllocErrorPanicPayload` and changes allocation errors to always be reported as panics.
- The second commit removes `#[alloc_error_handler]` and the `alloc_error_hook` API.
ACP: https://github.com/rust-lang/libs-team/issues/192Closes#51540Closes#51245
Rollup of 5 pull requests
Successful merges:
- #110333 (rustc_metadata: Split `children` into multiple tables)
- #110501 (rustdoc: fix ICE from rustc_resolve and librustdoc parse divergence)
- #110608 (Specialize some `io::Read` and `io::Write` methods for `VecDeque<u8>` and `&[u8]`)
- #110632 (Panic instead of truncating if the incremental on-disk cache is too big)
- #110633 (More `mem::take` in `library`)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
instead of merging everything into a single bag.
If it's acceptable from performance point of view, then it's more clear to keep this stuff organized more in accordance with its use.
Add `rustc_fluent_macro` to decouple fluent from `rustc_macros`
Fluent, with all the icu4x it brings in, takes quite some time to compile. `fluent_messages!` is only needed in further downstream rustc crates, but is blocking more upstream crates like `rustc_index`. By splitting it out, we allow `rustc_macros` to be compiled earlier, which speeds up `x check compiler` by about 5 seconds (and even more after the needless dependency on `serde_json` is removed from `rustc_data_structures`).
Switch to `EarlyBinder` for `collect_return_position_impl_trait_in_trait_tys`
Part of the work to finish https://github.com/rust-lang/rust/issues/105779.
This PR adds `EarlyBinder` to the return type of the `collect_return_position_impl_trait_in_trait_tys` query and removes `bound_return_position_impl_trait_in_trait_tys`.
r? `@lcnr`
Encode hashes as bytes, not varint
In a few places, we store hashes as `u64` or `u128` and then apply `derive(Decodable, Encodable)` to the enclosing struct/enum. It is more efficient to encode hashes directly than try to apply some varint encoding. This PR adds two new types `Hash64` and `Hash128` which are produced by `StableHasher` and replace every use of storing a `u64` or `u128` that represents a hash.
Distribution of the byte lengths of leb128 encodings, from `x build --stage 2` with `incremental = true`
Before:
```
( 1) 373418203 (53.7%, 53.7%): 1
( 2) 196240113 (28.2%, 81.9%): 3
( 3) 108157958 (15.6%, 97.5%): 2
( 4) 17213120 ( 2.5%, 99.9%): 4
( 5) 223614 ( 0.0%,100.0%): 9
( 6) 216262 ( 0.0%,100.0%): 10
( 7) 15447 ( 0.0%,100.0%): 5
( 8) 3633 ( 0.0%,100.0%): 19
( 9) 3030 ( 0.0%,100.0%): 8
( 10) 1167 ( 0.0%,100.0%): 18
( 11) 1032 ( 0.0%,100.0%): 7
( 12) 1003 ( 0.0%,100.0%): 6
( 13) 10 ( 0.0%,100.0%): 16
( 14) 10 ( 0.0%,100.0%): 17
( 15) 5 ( 0.0%,100.0%): 12
( 16) 4 ( 0.0%,100.0%): 14
```
After:
```
( 1) 372939136 (53.7%, 53.7%): 1
( 2) 196240140 (28.3%, 82.0%): 3
( 3) 108014969 (15.6%, 97.5%): 2
( 4) 17192375 ( 2.5%,100.0%): 4
( 5) 435 ( 0.0%,100.0%): 5
( 6) 83 ( 0.0%,100.0%): 18
( 7) 79 ( 0.0%,100.0%): 10
( 8) 50 ( 0.0%,100.0%): 9
( 9) 6 ( 0.0%,100.0%): 19
```
The remaining 9 or 10 and 18 or 19 are `u64` and `u128` respectively that have the high bits set. As far as I can tell these are coming primarily from `SwitchTargets`.
rustc_metadata: Remove `Span` from `ModChild`
It can be decoded on demand from regular `def_span` tables.
Partially mitigates perf regressions from https://github.com/rust-lang/rust/pull/109500.
Fluent, with all the icu4x it brings in, takes quite some time to
compile. `fluent_messages!` is only needed in further downstream rustc
crates, but is blocking more upstream crates like `rustc_index`. By
splitting it out, we allow `rustc_macros` to be compiled earlier, which
speeds up `x check compiler` by about 5 seconds (and even more after the
needless dependency on `serde_json` is removed from
`rustc_data_structures`).
Spelling compiler
This is per https://github.com/rust-lang/rust/pull/110392#issuecomment-1510193656
I'm going to delay performing a squash because I really don't expect people to be perfectly happy w/ my changes, I really am a human and I really do make mistakes.
r? Nilstrieb
I'm going to be flying this evening, but I should be able to squash / respond to reviews w/in a day or two.
I tried to be careful about dropping changes to `tests`, afaict only two files had changes that were likely related to the changes for a given commit (this is where not having eagerly squashed should have given me an advantage), but, that said, picking things apart can be error prone.