Remove `--extern-location` and all associated code
`--extern-location` was an experiment to investigate the best way to
generate useful diagnostics for unused dependency warnings by enabling a
build system to identify the corresponding build config.
While I did successfully use this, I've since been convinced the
alternative `--json unused-externs` mechanism is the way to go, and
there's no point in having two mechanisms with basically the same
functionality.
This effectively reverts https://github.com/rust-lang/rust/pull/72603
`--extern-location` was an experiment to investigate the best way to
generate useful diagnostics for unused dependency warnings by enabling a
build system to identify the corresponding build config.
While I did successfully use this, I've since been convinced the
alternative `--json unused-externs` mechanism is the way to go, and
there's no point in having two mechanisms with basically the same
functionality.
This effectively reverts https://github.com/rust-lang/rust/pull/72603
Loading the fallback bundle in compilation sessions that won't go on to
emit any errors unnecessarily degrades compile time performance, so
lazily create the Fluent bundle when it is first required.
Signed-off-by: David Wood <david.wood@huawei.com>
Non-subdiagnostic fields (i.e. those that don't have `#[label]`
attributes or similar and are just additional context) have to be added
as arguments for Fluent messages to refer them. This commit extends the
`SessionDiagnostic` derive to do this for all fields that do not have
attributes and introduces an `IntoDiagnosticArg` trait that is
implemented on all types that can be converted to a argument for Fluent.
Signed-off-by: David Wood <david.wood@huawei.com>
Extend loading of Fluent bundles so that bundles can be loaded from the
sysroot based on the language requested by the user, or using a nightly
flag.
Sysroot bundles are loaded from `$sysroot/share/locale/$locale/*.ftl`.
Signed-off-by: David Wood <david.wood@huawei.com>
This commit updates the signatures of all diagnostic functions to accept
types that can be converted into a `DiagnosticMessage`. This enables
existing diagnostic calls to continue to work as before and Fluent
identifiers to be provided. The `SessionDiagnostic` derive just
generates normal diagnostic calls, so these APIs had to be modified to
accept Fluent identifiers.
In addition, loading of the "fallback" Fluent bundle, which contains the
built-in English messages, has been implemented.
Each diagnostic now has "arguments" which correspond to variables in the
Fluent messages (necessary to render a Fluent message) but no API for
adding arguments has been added yet. Therefore, diagnostics (that do not
require interpolation) can be converted to use Fluent identifiers and
will be output as before.
`MultiSpan` contains labels, which are more complicated with the
introduction of diagnostic translation and will use types from
`rustc_errors` - however, `rustc_errors` depends on `rustc_span` so
`rustc_span` cannot use types like `DiagnosticMessage` without
dependency cycles. Introduce a new `rustc_error_messages` crate that can
contain `DiagnosticMessage` and `MultiSpan`.
Signed-off-by: David Wood <david.wood@huawei.com>
Introduce a `DiagnosticMessage` type that will enable diagnostic
messages to be simple strings or Fluent identifiers.
`DiagnosticMessage` is now used in the implementation of the standard
`DiagnosticBuilder` APIs.
Signed-off-by: David Wood <david.wood@huawei.com>
There are a few places were we have to construct it, though, and a few
places that are more invasive to change. To do this, we create a
constructor with a long obvious name.
Improve `expect` impl and handle `#[expect(unfulfilled_lint_expectations)]` (RFC 2383)
This PR updates unstable `ExpectationIds` in stashed diagnostics and adds some asserts to ensure that the stored expectations are really empty in the end. Additionally, it handles the `#[expect(unfulfilled_lint_expectations)]` case.
According to the [Errors and lints docs](https://rustc-dev-guide.rust-lang.org/diagnostics.html#diagnostic-levels) the `error` level should only be used _"when the compiler detects a problem that makes it unable to compile the program"_. As this isn't the case with `#[expect(unfulfilled_lint_expectations)]` I decided to only create a warning. To avoid adding a new lint only for this case, I simply emit a `unfulfilled_lint_expectations` diagnostic with an additional note.
---
r? `@wesleywiser` I'm requesting a review from you since you reviewed the previous PR https://github.com/rust-lang/rust/pull/87835. You are welcome to reassign it if you're busy 🙃
rfc: [RFC-2383](https://rust-lang.github.io/rfcs/2383-lint-reasons.html)
tracking issue: https://github.com/rust-lang/rust/issues/85549
cc: `@flip1995` In case you're also interested in this :)
This updates the standard library's documentation to use the new syntax. The
documentation is worthwhile to update as it should be more idiomatic
(particularly for features like this, which are nice for users to get acquainted
with). The general codebase is likely more hassle than benefit to update: it'll
hurt git blame, and generally updates can be done by folks updating the code if
(and when) that makes things more readable with the new format.
A few places in the compiler and library code are updated (mostly just due to
already having been done when this commit was first authored).
Implementation of the `expect` attribute (RFC 2383)
This is an implementation of the `expect` attribute as described in [RFC-2383](https://rust-lang.github.io/rfcs/2383-lint-reasons.html). The attribute allows the suppression of lint message by expecting them. Unfulfilled lint expectations (meaning no expected lint was caught) will emit the `unfulfilled_lint_expectations` lint at the `expect` attribute.
### Example
#### input
```rs
// required feature flag
#![feature(lint_reasons)]
#[expect(unused_mut)] // Will warn about an unfulfilled expectation
#[expect(unused_variables)] // Will be fulfilled by x
fn main() {
let x = 0;
}
```
#### output
```txt
warning: this lint expectation is unfulfilled
--> $DIR/trigger_lint.rs:3:1
|
LL | #[expect(unused_mut)] // Will warn about an unfulfilled expectation
| ^^^^^^^^^^
|
= note: `#[warn(unfulfilled_lint_expectations)]` on by default
```
### Implementation
This implementation introduces `Expect` as a new lint level for diagnostics, which have been expected. All lint expectations marked via the `expect` attribute are collected in the [`LintLevelsBuilder`] and assigned an ID that is stored in the new lint level. The `LintLevelsBuilder` stores all found expectations and the data needed to emit the `unfulfilled_lint_expectations` in the [`LintLevelsMap`] which is the result of the [`lint_levels()`] query.
The [`rustc_errors::HandlerInner`] is the central error handler in rustc and handles the emission of all diagnostics. Lint message with the level `Expect` are suppressed during this emission, while the expectation ID is stored in a set which marks them as fulfilled. The last step is then so simply check if all expectations collected by the [`LintLevelsBuilder`] in the [`LintLevelsMap`] have been marked as fulfilled in the [`rustc_errors::HandlerInner`]. Otherwise, a new lint message will be emitted.
The implementation of the `LintExpectationId` required some special handling to make it stable between sessions. Lints can be emitted during [`EarlyLintPass`]es. At this stage, it's not possible to create a stable identifier. The level instead stores an unstable identifier, which is later converted to a stable `LintExpectationId`.
### Followup TO-DOs
All open TO-DOs have been marked with `FIXME` comments in the code. This is the combined list of them:
* [ ] The current implementation doesn't cover cases where the `unfulfilled_lint_expectations` lint is actually expected by another `expect` attribute.
* This should be easily possible, but I wanted to get some feedback before putting more work into this.
* This could also be done in a new PR to not add to much more code to this one
* [ ] Update unstable documentation to reflect this change.
* [ ] Update unstable expectation ids in [`HandlerInner::stashed_diagnostics`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.HandlerInner.html#structfield.stashed_diagnostics)
### Open questions
I also have a few open questions where I would like to get feedback on:
1. The RFC discussion included a suggestion to change the `expect` attribute to something else. (Initiated by `@Ixrec` [here](https://github.com/rust-lang/rfcs/pull/2383#issuecomment-378424091), suggestion from `@scottmcm` to use `#[should_lint(...)]` [here](https://github.com/rust-lang/rfcs/pull/2383#issuecomment-378648877)). No real conclusion was drawn on that point from my understanding. Is this still open for discussion, or was this discarded with the merge of the RFC?
2. How should the expect attribute deal with the new `force-warn` lint level?
---
This approach was inspired by a discussion with `@LeSeulArtichaut.`
RFC tracking issue: #54503
Mentoring/Implementation issue: #85549
[`LintLevelsBuilder`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/levels/struct.LintLevelsBuilder.html
[`LintLevelsMap`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/lint/struct.LintLevelMap.html
[`lint_levels()`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/context/struct.TyCtxt.html#method.lint_levels
[`rustc_errors::HandlerInner`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_errors/struct.HandlerInner.html
[`EarlyLintPass`]: https://doc.rust-lang.org/nightly/nightly-rustc/rustc_lint/trait.EarlyLintPass.html
`Decoder` has two impls:
- opaque: this impl is already partly infallible, i.e. in some places it
currently panics on failure (e.g. if the input is too short, or on a
bad `Result` discriminant), and in some places it returns an error
(e.g. on a bad `Option` discriminant). The number of places where
either happens is surprisingly small, just because the binary
representation has very little redundancy and a lot of input reading
can occur even on malformed data.
- json: this impl is fully fallible, but it's only used (a) for the
`.rlink` file production, and there's a `FIXME` comment suggesting it
should change to a binary format, and (b) in a few tests in
non-fundamental ways. Indeed #85993 is open to remove it entirely.
And the top-level places in the compiler that call into decoding just
abort on error anyway. So the fallibility is providing little value, and
getting rid of it leads to some non-trivial performance improvements.
Much of this commit is pretty boring and mechanical. Some notes about
a few interesting parts:
- The commit removes `Decoder::{Error,error}`.
- `InternIteratorElement::intern_with`: the impl for `T` now has the same
optimization for small counts that the impl for `Result<T, E>` has,
because it's now much hotter.
- Decodable impls for SmallVec, LinkedList, VecDeque now all use
`collect`, which is nice; the one for `Vec` uses unsafe code, because
that gave better perf on some benchmarks.
This was a regression from https://github.com/rust-lang/rust/pull/87337;
the `panic_if_treat_err_as_bug` function only checked the number of hard
errors, not the number of lint errors.