Trying to use C-variadics in a const function would previously fail with
an error like "destructor of `VaListImpl<'_>` cannot be evaluated at
compile-time".
Add an explicit check for const C-variadics to provide a clearer error:
"functions cannot be both `const` and C-variadic".
Properly restore snapshot when failing to recover parsing ternary
If the recovery parsed an expression, then failed to eat a `:`, it would return `false` without restoring the snapshot. Fix this by always restoring the snapshot when returning `false`.
Draft for now because I'd like to try and improve this recovery further.
Fixes#117208
When encountering code like `f::<f::<f::<f::<f::<f::<f::<f::<...` with
unmatched closing angle brackets, add a linear check that avoids the
exponential behavior of the parse recovery mechanism.
Fix#117080.
report `unused_import` for empty reexports even it is pub
Fixes#116032
An easy fix. r? `@petrochenkov`
(Discovered this issue while reviewing #115993.)
Avoid a `track_errors` by bubbling up most errors from `check_well_formed`
I believe `track_errors` is mostly papering over issues that a sufficiently convoluted query graph can hit. I made this change, while the actual change I want to do is to stop bailing out early on errors, and instead use this new `ErrorGuaranteed` to invoke `check_well_formed` for individual items before doing all the `typeck` logic on them.
This works towards resolving https://github.com/rust-lang/rust/issues/97477 and various other ICEs, as well as allowing us to use parallel rustc more (which is currently rather limited/bottlenecked due to the very sequential nature in which we do `rustc_hir_analysis::check_crate`)
cc `@SparrowLii` `@Zoxc` for the new `try_par_for_each_in` function
Mention the syntax for `use` on `mod foo;` if `foo` doesn't exist
Newcomers might get confused that `mod` is the only way of defining scopes, and that it can be used as if it were `use`.
Fix#69492.
The new place makes more sense and covers more cases beyond individual
statements.
```
error: expected one of `.`, `;`, `?`, `else`, or an operator, found doc comment `//!foo
--> $DIR/doc-comment-in-stmt.rs:25:22
|
LL | let y = x.max(1) //!foo
| ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ expected one of `.`, `;`, `?`, `else`, or an operator
|
help: add a space before `!` to write a regular comment
|
LL | let y = x.max(1) // !foo
| +
```
Fix#65329.
Stabilize `async fn` and return-position `impl Trait` in trait
# Stabilization report
This report proposes the stabilization of `#![feature(return_position_impl_trait_in_trait)]` ([RPITIT][RFC 3425]) and `#![feature(async_fn_in_trait)]` ([AFIT][RFC 3185]). These are both long awaited features that increase the expressiveness of the Rust language and trait system.
Closes#91611
[RFC 3185]: https://rust-lang.github.io/rfcs/3185-static-async-fn-in-trait.html
[RFC 3425]: https://rust-lang.github.io/rfcs/3425-return-position-impl-trait-in-traits.html
## Updates from thread
The thread has covered two major concerns:
* [Given that we don't have RTN, what should we stabilize?](https://github.com/rust-lang/rust/pull/115822#issuecomment-1731149475) -- proposed resolution is [adding a lint](https://github.com/rust-lang/rust/pull/115822#issuecomment-1728354622) and [careful messaging](https://github.com/rust-lang/rust/pull/115822#issuecomment-1731136169)
* [Interaction between outlives bounds and capture semantics](https://github.com/rust-lang/rust/pull/115822#issuecomment-1731153952) -- This is fixable in a forwards-compatible way via #116040, and also eventually via ATPIT.
## Stabilization Summary
This stabilization allows the following examples to work.
### Example of return-position `impl Trait` in trait definition
```rust
trait Bar {
fn bar(self) -> impl Send;
}
```
This declares a trait method that returns *some* type that implements `Send`. It's similar to writing the following using an associated type, except that the associated type is anonymous.
```rust
trait Bar {
type _0: Send;
fn bar(self) -> Self::_0;
}
```
### Example of return-position `impl Trait` in trait implementation
```rust
impl Bar for () {
fn bar(self) -> impl Send {}
}
```
This defines a method implementation that returns an opaque type, just like [RPIT][RFC 1522] does, except that all in-scope lifetimes are captured in the opaque type (as is already true for `async fn` and as is expected to be true for RPIT in Rust Edition 2024), as described below.
[RFC 1522]: https://rust-lang.github.io/rfcs/1522-conservative-impl-trait.html
### Example of `async fn` in trait
```rust
trait Bar {
async fn bar(self);
}
impl Bar for () {
async fn bar(self) {}
}
```
This declares a trait method that returns *some* [`Future`](https://doc.rust-lang.org/core/future/trait.Future.html) and a corresponding method implementation. This is equivalent to writing the following using RPITIT.
```rust
use core::future::Future;
trait Bar {
fn bar(self) -> impl Future<Output = ()>;
}
impl Bar for () {
fn bar(self) -> impl Future<Output = ()> { async {} }
}
```
The desirability of this desugaring being available is part of why RPITIT and AFIT are being proposed for stabilization at the same time.
## Motivation
Long ago, Rust added [RPIT][RFC 1522] and [`async`/`await`][RFC 2394]. These are major features that are widely used in the ecosystem. However, until now, these feature could not be used in *traits* and trait implementations. This left traits as a kind of second-class citizen of the language. This stabilization fixes that.
[RFC 2394]: https://rust-lang.github.io/rfcs/2394-async_await.html
### `async fn` in trait
Async/await allows users to write asynchronous code much easier than they could before. However, it doesn't play nice with other core language features that make Rust the great language it is, like traits. Support for `async fn` in traits has been long anticipated and was not added before due to limitations in the compiler that have now been lifted.
`async fn` in traits will unblock a lot of work in the ecosystem and the standard library. It is not currently possible to write a trait that is implemented using `async fn`. The workarounds that exist are undesirable because they require allocation and dynamic dispatch, and any trait that uses them will become obsolete once native `async fn` in trait is stabilized.
We also have ample evidence that there is demand for this feature from the [`async-trait` crate][async-trait], which emulates the feature using dynamic dispatch. The async-trait crate is currently the #5 async crate on crates.io ranked by recent downloads, receiving over 78M all-time downloads. According to a [recent analysis][async-trait-analysis], 4% of all crates use the `#[async_trait]` macro it provides, representing 7% of all function and method signatures in trait definitions on crates.io. We think this is a *lower bound* on demand for the feature, because users are unlikely to use `#[async_trait]` on public traits on crates.io for the reasons already given.
[async-trait]: https://crates.io/crates/async-trait
[async-trait-analysis]: https://rust-lang.zulipchat.com/#narrow/stream/315482-t-compiler.2Fetc.2Fopaque-types/topic/RPIT.20capture.20rules.20.28capturing.20everything.29/near/389496292
### Return-position `impl Trait` in trait
`async fn` always desugars to a function that returns `impl Future`.
```rust!
async fn foo() -> i32 { 100 }
// Equivalent to:
fn foo() -> impl Future<Output = i32> { async { 100 } }
```
All `async fn`s today can be rewritten this way. This is useful because it allows adding behavior that runs at the time of the function call, before the first `.await` on the returned future.
In the spirit of supporting the same set of features on `async fn` in traits that we do outside of traits, it makes sense to stabilize this as well. As described by the [RPITIT RFC][rpitit-rfc], this includes the ability to mix and match the equivalent forms in traits and their corresponding impls:
```rust!
trait Foo {
async fn foo(self) -> i32;
}
// Can be implemented as:
impl Foo for MyType {
fn foo(self) -> impl Future<Output = i32> {
async { 100 }
}
}
```
Return-position `impl Trait` in trait is useful for cases beyond async, just as regular RPIT is. As a simple example, the RFC showed an alternative way of writing the `IntoIterator` trait with one fewer associated type.
```rust!
trait NewIntoIterator {
type Item;
fn new_into_iter(self) -> impl Iterator<Item = Self::Item>;
}
impl<T> NewIntoIterator for Vec<T> {
type Item = T;
fn new_into_iter(self) -> impl Iterator<Item = T> {
self.into_iter()
}
}
```
[rpitit-rfc]: https://rust-lang.github.io/rfcs/3425-return-position-impl-trait-in-traits.html
## Major design decisions
This section describes the major design decisions that were reached after the RFC was accepted:
- EDIT: Lint against async fn in trait definitions
- Until the [send bound problem](https://smallcultfollowing.com/babysteps/blog/2023/02/01/async-trait-send-bounds-part-1-intro/) is resolved, the use of `async fn` in trait definitions could lead to a bad experience for people using work-stealing executors (by far the most popular choice). However, there are significant use cases for which the current support is all that is needed (single-threaded executors, such as those used in embedded use cases, as well as thread-per-core setups). We are prioritizing serving users well over protecting people from misuse, and therefore, we opt to stabilize the full range of functionality; however, to help steer people correctly, we are will issue a warning on the use of `async fn` in trait definitions that advises users about the limitations. (See [this summary comment](https://github.com/rust-lang/rust/pull/115822#issuecomment-1731149475) for the details of the concern, and [this comment](https://github.com/rust-lang/rust/pull/115822#issuecomment-1728354622) for more details about the reasoning that led to this conclusion.)
- Capture rules:
- The RFC's initial capture rules for lifetimes in impls/traits were found to be imprecisely precise and to introduce various inconsistencies. After much discussion, the decision was reached to make `-> impl Trait` in traits/impls capture *all* in-scope parameters, including both lifetimes and types. This is a departure from the behavior of RPITs in other contexts; an RFC is currently being authored to change the behavior of RPITs in other contexts in a future edition.
- Major discussion links:
- [Lang team design meeting from 2023-07-26](https://hackmd.io/sFaSIMJOQcuwCdnUvCxtuQ?view)
- Refinement:
- The [refinement RFC] initially proposed that impl signatures that are more specific than their trait are not allowed unless the `#[refine]` attribute was included, but left it as an open question how to implement this. The stabilized proposal is that it is not a hard error to omit `#[refine]`, but there is a lint which fires if the impl's return type is more precise than the trait. This greatly simplified the desugaring and implementation while still achieving the original goal of ensuring that users do not accidentally commit to a more specific return type than they intended.
- Major discussion links:
- [Zulip thread](https://rust-lang.zulipchat.com/#narrow/stream/213817-t-lang/topic/.60.23.5Brefine.5D.60.20as.20a.20lint)
[refinement RFC]: https://rust-lang.github.io/rfcs/3245-refined-impls.html
## What is stabilized
### Async functions in traits and trait implementations
* `async fn` are now supported in traits and trait implementations.
* Associated functions in traits that are `async` may have default bodies.
### Return-position impl trait in traits and trait implementations
* Return-position `impl Trait`s are now supported in traits and trait implementations.
* Return-position `impl Trait` in implementations are treated like regular return-position `impl Trait`s, and therefore behave according to the same inference rules for hidden type inference and well-formedness.
* Associated functions in traits that name return-position `impl Trait`s may have default bodies.
* Implementations may provide either concrete types or `impl Trait` for each corresponding `impl Trait` in the trait method signature.
For a detailed exploration of the technical implementation of return-position `impl Trait` in traits, see [the dev guide](https://rustc-dev-guide.rust-lang.org/return-position-impl-trait-in-trait.html).
### Mixing `async fn` in trait and return-position `impl Trait` in trait
A trait function declaration that is `async fn ..() -> T` may be satisfied by an implementation function that returns `impl Future<Output = T>`, or vice versa.
```rust
trait Async {
async fn hello();
}
impl Async for () {
fn hello() -> impl Future<Output = ()> {
async {}
}
}
trait RPIT {
fn hello() -> impl Future<Output = String>;
}
impl RPIT for () {
async fn hello() -> String {
"hello".to_string()
}
}
```
### Return-position `impl Trait` in traits and trait implementations capture all in-scope lifetimes
Described above in "major design decisions".
### Return-position `impl Trait` in traits are "always revealing"
When a trait uses `-> impl Trait` in return position, it logically desugars to an associated type that represents the return (the actual implementation in the compiler is different, as described below). The value of this associated type is determined by the actual return type written in the impl; if the impl also uses `-> impl Trait` as the return type, then the value of the associated type is an opaque type scoped to the impl method (similar to what you would get when calling an inherent function returning `-> impl Trait`). As with any associated type, the value of this special associated type can be revealed by the compiler if the compiler can figure out what impl is being used.
For example, given this trait:
```rust
trait AsDebug {
fn as_debug(&self) -> impl Debug;
}
```
A function working with the trait generically is only able to see that the return value is `Debug`:
```rust
fn foo<T: AsDebug>(t: &T) {
let u = t.as_debug();
println!("{}", u); // ERROR: `u` is not known to implement `Display`
}
```
But if a function calls `as_debug` on a known type (say, `u32`), it may be able to resolve the return type more specifically, if that implementation specifies a concrete type as well:
```rust
impl AsDebug for u32 {
fn as_debug(&self) -> u32 {
*self
}
}
fn foo(t: &u32) {
let u: u32 = t.as_debug(); // OK!
println!("{}", t.as_debug()); // ALSO OK (since `u32: Display`).
}
```
The return type used in the impl therefore represents a **semver binding** promise from the impl author that the return type of `<u32 as AsDebug>::as_debug` will not change. This could come as a surprise to users, who might expect that they are free to change the return type to any other type that implements `Debug`. To address this, we include a [`refining_impl_trait` lint](https://github.com/rust-lang/rust/pull/115582) that warns if the impl uses a specific type -- the `impl AsDebug for u32` above, for example, would toggle the lint.
The lint message explains what is going on and encourages users to `allow` the lint to indicate that they meant to refine the return type:
```rust
impl AsDebug for u32 {
#[allow(refining_impl_trait)]
fn as_debug(&self) -> u32 {
*self
}
}
```
[RFC #3245](https://github.com/rust-lang/rfcs/pull/3245) proposed a new attribute, `#[refine]`, that could also be used to "opt-in" to refinements like this (and which would then silence the lint). That RFC is not currently implemented -- the `#[refine]` attribute is also expected to reveal other details from the signature and has not yet been fully implemented.
### Return-position `impl Trait` and `async fn` in traits are opted-out of object safety checks when the parent function has `Self: Sized`
```rust
trait IsObjectSafe {
fn rpit() -> impl Sized where Self: Sized;
async fn afit() where Self: Sized;
}
```
Traits that mention return-position `impl Trait` or `async fn` in trait when the associated function includes a `Self: Sized` bound will remain object safe. That is because the associated function that defines them will be opted-out of the vtable of the trait, and the associated types will be unnameable from any trait object.
This can alternatively be seen as a consequence of https://github.com/rust-lang/rust/pull/112319#issue-1742251747 and the desugaring of return-position `impl Trait` in traits to associated types which inherit the where-clauses of the associated function that defines them.
## What isn't stabilized (aka, potential future work)
### Dynamic dispatch
As stabilized, traits containing RPITIT and AFIT are **not dyn compatible**. This means that you cannot create `dyn Trait` objects from them and can only use static dispatch. The reason for this limitation is that dynamic dispatch support for RPITIT and AFIT is more complex than static dispatch, as described on the [async fundamentals page](https://rust-lang.github.io/async-fundamentals-initiative/evaluation/challenges/dyn_traits.html). The primary challenge to using `dyn Trait` in today's Rust is that **`dyn Trait` today must list the values of all associated types**. This means you would have to write `dyn for<'s> Trait<Foo<'s> = XXX>` where `XXX` is the future type defined by the impl, such as `F_A`. This is not only verbose (or impossible), it also uniquely ties the `dyn Trait` to a particular impl, defeating the whole point of `dyn Trait`.
The precise design for handling dynamic dispatch is not yet determined. Top candidates include:
- [callee site selection][], in which we permit unsized return values so that the return type for an `-> impl Foo` method be can be `dyn Foo`, but then users must specify the type of wide pointer at the call-site in some fashion.
- [`dyn*`][], where we create a built-in encapsulation of a "wide pointer" and map the associated type corresponding to an RPITIT to the corresponding `dyn*` type (`dyn*` itself is not exposed to users as a type in this proposal, though that could be a future extension).
[callee site selection]: https://smallcultfollowing.com/babysteps/blog/2022/09/21/dyn-async-traits-part-9-callee-site-selection/
[`dyn*`]: https://smallcultfollowing.com/babysteps/blog/2022/03/29/dyn-can-we-make-dyn-sized/
### Where-clause bounds on return-position `impl Trait` in traits or async futures (RTN/ART)
One limitation of async fn in traits and RPITIT as stabilized is that there is no way for users to write code that adds additional bounds beyond those listed in the `-> impl Trait`. The most common example is wanting to write a generic function that requires that the future returned from an `async fn` be `Send`:
```rust
trait Greet {
async fn greet(&self);
}
fn greet_in_parallel<G: Greet>(g: &G) {
runtime::spawn(async move {
g.greet().await; //~ ERROR: future returned by `greet` may not be `Send`
})
}
```
Currently, since the associated types added for the return type are anonymous, there is no where-clause that could be added to make this code compile.
There have been various proposals for how to address this problem (e.g., [return type notation][rtn] or having an annotation to give a name to the associated type), but we leave the selection of one of those mechanisms to future work.
[rtn]: https://smallcultfollowing.com/babysteps/blog/2023/02/13/return-type-notation-send-bounds-part-2/
In the meantime, there are workarounds that one can use to address this problem, listed below.
#### Require all futures to be `Send`
For many users, the trait may only ever be used with `Send` futures, in which case one can write an explicit `impl Future + Send`:
```rust
trait Greet {
fn greet(&self) -> impl Future<Output = ()> + Send;
}
```
The nice thing about this is that it is still compatible with using `async fn` in the trait impl. In the async working group case studies, we found that this could work for the [builder provider API](https://rust-lang.github.io/async-fundamentals-initiative/evaluation/case-studies/builder-provider-api.html). This is also the default approach used by the `#[async_trait]` crate which, as we have noted, has seen widespread adoption.
#### Avoid generics
This problem only applies when the `Self` type is generic. If the `Self` type is known, then the precise return type from an `async fn` is revealed, and the `Send` bound can be inferred thanks to auto-trait leakage. Even in cases where generics may appear to be required, it is sometimes possible to rewrite the code to avoid them. The [socket handler refactor](https://rust-lang.github.io/async-fundamentals-initiative/evaluation/case-studies/socket-handler.html) case study provides one such example.
### Unify capture behavior for `-> impl Trait` in inherent methods and traits
As stabilized, the capture behavior for `-> impl Trait` in a trait (whether as part of an async fn or a RPITIT) captures all types and lifetimes, whereas the existing behavior for inherent methods only captures types and lifetimes that are explicitly referenced. Capturing all lifetimes in traits was necessary to avoid various surprising inconsistencies; the expressed intent of the lang team is to extend that behavior so that we also capture all lifetimes in inherent methods, which would create more consistency and also address a common source of user confusion, but that will have to happen over the 2024 edition. The RFC is in progress. Should we opt not to accept that RFC, we can bring the capture behavior for `-> impl Trait` into alignment in other ways as part of the 2024 edition.
### `impl_trait_projections`
Orthgonal to `async_fn_in_trait` and `return_position_impl_trait_in_trait`, since it can be triggered on stable code. This will be stabilized separately in [#115659](https://github.com/rust-lang/rust/pull/115659).
<details>
If we try to write this code without `impl_trait_projections`, we will get an error:
```rust
#![feature(async_fn_in_trait)]
trait Foo {
type Error;
async fn foo(&mut self) -> Result<(), Self::Error>;
}
impl<T: Foo> Foo for &mut T {
type Error = T::Error;
async fn foo(&mut self) -> Result<(), Self::Error> {
T::foo(self).await
}
}
```
The error relates to the use of `Self` in a trait impl when the self type has a lifetime. It can be worked around by rewriting the impl not to use `Self`:
```rust
#![feature(async_fn_in_trait)]
trait Foo {
type Error;
async fn foo(&mut self) -> Result<(), Self::Error>;
}
impl<T: Foo> Foo for &mut T {
type Error = T::Error;
async fn foo(&mut self) -> Result<(), <&mut T as Foo>::Error> {
T::foo(self).await
}
}
```
</details>
## Tests
Tests are generally organized between return-position `impl Trait` and `async fn` in trait, when the distinction matters.
* RPITIT: https://github.com/rust-lang/rust/tree/master/tests/ui/impl-trait/in-trait
* AFIT: https://github.com/rust-lang/rust/tree/master/tests/ui/async-await/in-trait
## Remaining bugs and open issues
* #112047: Indirection introduced by `async fn` and return-position `impl Trait` in traits may hide cycles in opaque types, causing overflow errors that can only be discovered by monomorphization.
* #111105 - `async fn` in trait is susceptible to issues with checking auto traits on futures' generators, like regular `async`. This is a manifestation of #110338.
* This was deemed not blocking because fixing it is forwards-compatible, and regular `async` is subject to the same issues.
* #104689: `async fn` and return-position `impl Trait` in trait requires the late-bound lifetimes in a trait and impl function signature to be equal.
* This can be relaxed in the future with a smarter lexical region resolution algorithm.
* #102527: Nesting return-position `impl Trait` in trait deeply may result in slow compile times.
* This has only been reported once, and can be fixed in the future.
* #108362: Inference between return types and generics of a function may have difficulties when there's an `.await`.
* This isn't related to AFIT (https://github.com/rust-lang/rust/issues/108362#issuecomment-1717927918) -- using traits does mean that there's possibly easier ways to hit it.
* #112626: Because `async fn` and return-position `impl Trait` in traits lower to associated types, users may encounter strange behaviors when implementing circularly dependent traits.
* This is not specific to RPITIT, and is a limitation of associated types: https://github.com/rust-lang/rust/issues/112626#issuecomment-1603405105
* **(Nightly)** #108309: `async fn` and return-position `impl Trait` in trait do not support specialization. This was deemed not blocking, since it can be fixed in the future (e.g. #108321) and specialization is a nightly feature.
#### (Nightly) Return type notation bugs
RTN is not being stabilized here, but there are some interesting outstanding bugs. None of them are blockers for AFIT/RPITIT, but I'm noting them for completeness.
<details>
* #109924 is a bug that occurs when a higher-ranked trait bound has both inference variables and associated types. This is pre-existing -- RTN just gives you a more convenient way of producing them. This should be fixed by the new trait solver.
* #109924 is a manifestation of a more general issue with `async` and auto-trait bounds: #110338. RTN does not cause this issue, just allows us to put `Send` bounds on the anonymous futures that we have in traits.
* #112569 is a bug similar to associated type bounds, where nested bounds are not implied correctly.
</details>
## Alternatives
### Do nothing
We could choose not to stabilize these features. Users that can use the `#[async_trait]` macro would continue to do so. Library maintainers would continue to avoid async functions in traits, potentially blocking the stable release of many useful crates.
### Stabilize `impl Trait` in associated type instead
AFIT and RPITIT solve the problem of returning unnameable types from trait methods. It is also possible to solve this by using another unstable feature, `impl Trait` in an associated type. Users would need to define an associated type in both the trait and trait impl:
```rust!
trait Foo {
type Fut<'a>: Future<Output = i32> where Self: 'a;
fn foo(&self) -> Self::Fut<'_>;
}
impl Foo for MyType {
type Fut<'a> where Self: 'a = impl Future<Output = i32>;
fn foo(&self) -> Self::Fut<'_> {
async { 42 }
}
}
```
This also has the advantage of allowing generic code to bound the associated type. However, it is substantially less ergonomic than either `async fn` or `-> impl Future`, and users still expect to be able to use those features in traits. **Even if this feature were stable, we would still want to stabilize AFIT and RPITIT.**
That said, we can have both. `impl Trait` in associated types is desireable because it can be used in existing traits with explicit associated types, among other reasons. We *should* stabilize this feature once it is ready, but that's outside the scope of this proposal.
### Use the old capture semantics for RPITIT
We could choose to make the capture rules for RPITIT consistent with the existing rules for RPIT. However, there was strong consensus in a recent [lang team meeting](https://hackmd.io/sFaSIMJOQcuwCdnUvCxtuQ?view) that we should *change* these rules, and furthermore that new features should adopt the new rules.
This is consistent with the tenet in RFC 3085 of favoring ["Uniform behavior across editions"](https://rust-lang.github.io/rfcs/3085-edition-2021.html#uniform-behavior-across-editions) when possible. It greatly reduces the complexity of the feature by not requiring us to answer, or implement, the design questions that arise out of the interaction between the current capture rules and traits. This reduction in complexity – and eventual technical debt – is exactly in line with the motivation listed in the aforementioned RFC.
### Make refinement a hard error
Refinement (`refining_impl_trait`) is only a concern for library authors, and therefore doesn't really warrant making into a deny-by-default warning or an error.
Additionally, refinement is currently checked via a lint that compares bounds in the `impl Trait`s in the trait and impl syntactically. This is good enough for a warning that can be opted-out, but not if this were a hard error, which would ideally be implemented using fully semantic, implicational logic. This was implemented (#111931), but also is an unnecessary burden on the type system for little pay-off.
## History
- Dec 7, 2021: [RFC #3185: Static async fn in traits](https://rust-lang.github.io/rfcs/3185-static-async-fn-in-trait.html) merged
- Sep 9, 2022: [Initial implementation](https://github.com/rust-lang/rust/pull/101224) of AFIT and RPITIT landed
- Jun 13, 2023: [RFC #3425: Return position `impl Trait` in traits](https://rust-lang.github.io/rfcs/3425-return-position-impl-trait-in-traits.html) merged
<!--These will render pretty when pasted into github-->
Non-exhaustive list of PRs that are particularly relevant to the implementation:
- #101224
- #103491
- #104592
- #108141
- #108319
- #108672
- #112988
- #113182 (later made redundant by #114489)
- #113215
- #114489
- #115467
- #115582
Doc co-authored by `@nikomatsakis,` `@tmandry,` `@traviscross.` Thanks also to `@spastorino,` `@cjgillot` (for changes to opaque captures!), `@oli-obk` for many reviews, and many other contributors and issue-filers. Apologies if I left your name off 😺
Detect ruby-style closure in parser
When parsing a closure without a body that is surrounded by a block, suggest moving the opening brace after the closure head.
Fix#116608.
Detect missing `=>` after match guard during parsing
```
error: expected one of `,`, `:`, or `}`, found `.`
--> $DIR/missing-fat-arrow.rs:25:14
|
LL | Some(a) if a.value == b {
| - while parsing this struct
LL | a.value = 1;
| -^ expected one of `,`, `:`, or `}`
| |
| while parsing this struct field
|
help: try naming a field
|
LL | a: a.value = 1;
| ++
help: you might have meant to start a match arm after the match guard
|
LL | Some(a) if a.value == b => {
| ++
```
Fix#78585.
Add a note to duplicate diagnostics
Helps explain why there may be a difference between manual testing and the test suite output and highlights them as something to potentially look into
For existing duplicate diagnostics I just blessed them other than a few files that had other `NOTE` annotations in
```
error: expected one of `,`, `:`, or `}`, found `.`
--> $DIR/missing-fat-arrow.rs:25:14
|
LL | Some(a) if a.value == b {
| - while parsing this struct
LL | a.value = 1;
| -^ expected one of `,`, `:`, or `}`
| |
| while parsing this struct field
|
help: try naming a field
|
LL | a: a.value = 1;
| ++
help: you might have meant to start a match arm after the match guard
|
LL | Some(a) if a.value == b => {
| ++
```
Fix#78585.
adjust how closure/generator types are printed
I saw `&[closure@$DIR/issue-20862.rs:2:5]` and I thought it is a slice type, because that's usually what `&[_]` is... it took me a while to realize that this is just a confusing printer and actually there's no slice. Let's use something that cannot be mistaken for a regular type.
Add explanatory note to 'expected item' error
Fixes#113110
It changes the diagnostic from this:
```
error: expected item, found `5`
--> ../test.rs:1:1
|
1 | 5
| ^ expected item
```
to this:
```
error: expected item, found `5`
--> ../test.rs:1:1
|
1 | 5
| ^ expected item
|
= note: items are things that can appear at the root of a module
= note: for a full list see https://doc.rust-lang.org/reference/items.html
```
Make if let guard parsing consistent with normal guards
- Add tests that struct expressions are not allowed in `if let` and `while let` (no change, consistent with `if` and `while`)
- Allow struct expressions in `if let` guards (consistent with `if` guards).
r? `@cjgillot`
Closes#93817
cc #51114
parser: not insert dummy field in struct
Fixes#114636
This PR eliminates the dummy field, initially introduced in #113999, thereby enabling unrestricted use of `ident.unwrap()`. A side effect of this action is that we can only report the error of the first macro invocation field within the struct node.
An alternative solution might be giving a virtual name to the macro, but it appears more complex.(https://github.com/rust-lang/rust/issues/114636#issuecomment-1670228715). Furthermore, if you think https://github.com/rust-lang/rust/issues/114636#issuecomment-1670228715 is a better solution, feel free to close this PR.
Parse unnamed fields and anonymous structs or unions (no-recovery)
It is part of #114782 which implements #49804. Only parse anonymous structs or unions in struct field definition positions.
r? `@petrochenkov`
Anonymous structs or unions are only allowed in struct field
definitions.
Co-authored-by: carbotaniuman <41451839+carbotaniuman@users.noreply.github.com>
Gracefully handle ternary operator
Fixes#112578
~~May not be the best way to do this as it doesn't check for a single `:`, so it could perhaps appear even when the actual issue is just a missing semicolon. May not be the biggest deal, though?~~
Nevermind, got it working properly now ^^
Instead of linking to the old Rust Reference site on static.rust-lang.org,
link to the current website doc.rust-lang.org/stable/reference instead in
diagnostic about incorrect literals.
Recover `impl<T ?Sized>` correctly
Fixes#111327
r? ````@Nilstrieb```` but you can re-roll
Alternatively, happy to close this if we're okay with just saying "sorry #111327 is just a poor side-effect of parser ambiguity" 🤷
Implement builtin # syntax and use it for offset_of!(...)
Add `builtin #` syntax to the parser, as well as a generic infrastructure to support both item and expression position builtin syntaxes. The PR also uses this infrastructure for the implementation of the `offset_of!` macro, added by #106934.
cc `@petrochenkov` `@DrMeepster`
cc #110680 `builtin #` tracking issue
cc #106655 `offset_of!` tracking issue
Add `ConstParamTy` trait
This is a bit sketch, but idk.
r? `@BoxyUwU`
Yet to be done:
- [x] ~~Figure out if it's okay to implement `StructuralEq` for primitives / possibly remove their special casing~~ (it should be okay, but maybe not in this PR...)
- [ ] Maybe refactor the code a little bit
- [x] Use a macro to make impls a bit nicer
Future work:
- [ ] Actually™ use the trait when checking if a `const` generic type is allowed
- [ ] _Really_ refactor the surrounding code
- [ ] Refactor `marker.rs` into multiple modules for each "theme" of markers
My type ascription
Oh rip it out
Ah
If you think we live too much then
You can sacrifice diagnostics
Don't mix your garbage
Into my syntax
So many weird hacks keep diagnostics alive
Yet I don't even step outside
So many bad diagnostics keep tyasc alive
Yet tyasc doesn't even bother to survive!
Update `error [E0449]: unnecessary visibility qualifier` to be more clear
This updates the error message `error[E0449]: unnecessary visibility qualifier` by clearly indicating that visibility qualifiers already inherit their visibility from a parent item. The error message previously implied that the qualifiers were permitted, which is not the case anymore.
Resolves#109822.
Remove `identity_future` indirection
This was previously needed because the indirection used to hide some unexplained lifetime errors, which it turned out were related to the `min_choice` algorithm.
Removing the indirection also solves a couple of cycle errors, large moves and makes async blocks support the `#[track_caller]`annotation.
Fixes https://github.com/rust-lang/rust/issues/104826.
This was previously needed because the indirection used to hide some unexplained lifetime errors, which it turned out were related to the `min_choice` algorithm.
Removing the indirection also solves a couple of cycle errors, large moves and makes async blocks support the `#[track_caller]` annotation.
Don't recover lifetimes/labels containing emojis as character literals
Fixes#108019.
Note that at the time of this commit, `unic-emoji-char` seems to have data tables only up to Unicode 5.0, but Unicode is already newer than this.
A newer emoji such as `🥺` will not be recognized as an emoji but older emojis such as `🐱` will.
This PR leaves a couple of FIXMEs where `unic_emoji_char::is_emoji` is used.
Suggest fix for misplaced generic params on fn item #103366fixes#103366
This still has some work to go, but works for 2/3 of the initial base cases described in #1033366
simple fn:
```
error: expected identifier, found `<`
--> shreys/test_1.rs:1:3
|
1 | fn<T> id(x: T) -> T { x }
| ^ expected identifier
|
help: help: place the generic parameter list after the function name:
|
1 | fn id<T>(x: T) -> T { x }
| ~~~~
```
Complicated bounds
```
error: expected identifier, found `<`
--> spanishpear/test_2.rs:1:3
|
1 | fn<'a, B: 'a + std::ops::Add<Output = u32>> f(_x: B) { }
| ^ expected identifier
|
help: help: place the generic parameter list after the function name:
|
1 | fn f<'a, B: 'a + std::ops::Add<Output = u32>>(_x: B) { }
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
Opening a draft PR for comments on approach, particularly I have the following questions:
- [x] Is it okay to be using `err.span_suggestion` over struct derives? I struggled to get the initial implementation (particularly the correct suggestion message) on struct derives, although I think given what I've learned since starting, I could attempt re-doing it with that approach.
- [x] in the case where the snippet cannot be obtained from a span, is the `help` but no suggestion okay? I think yes (also, when does this case occur?)
- [x] are there any red flags for the generalisation of this work for relevant item kinds (i.e. `struct`, `enum`, `trait`, and `union`). My basic testing indicates it does work for those types except the help tip is currently hardcoded to `after the function name` - which should change dependent on the item.
- [x] I am planning to not show the suggestion if there is already a `<` after the item identifier, (i.e. if there are already generics, as after a function name per the original issue). Any major objections?
- [x] Is the style of error okay? I wasn't sure if there was a way to make it display nicer, or if thats handled by span_suggestion
These aren't blocking questions, and I will keep working on:
- check if there is a `<` after the ident (and if so, not showing the suggestion)
- generalize the help message
- figuring out how to write/run/etc ui tests (including reading the docs for them)
- logic cleanups
Avoid exposing type parameters and implementation details sourced from macro expansions
Fixes#107745.
~~I would like to **request some guidance** for this issue, because I don't think this is a good fix (a band-aid at best).~~
### The Problem
The code
```rust
fn main() {
println!("{:?}", []);
}
```
gets desugared into (`rustc +nightly --edition=2018 issue-107745.rs -Z unpretty=hir`):
```rust
#[prelude_import]
use std::prelude::rust_2018::*;
#[macro_use]
extern crate std;
fn main() {
{
::std::io::_print(<#[lang = "format_arguments"]>::new_v1(&["",
"\n"], &[<#[lang = "format_argument"]>::new_debug(&[])]));
};
}
```
so the diagnostics code tries to be as specific and helpful as possible, and I think it finds that `[]` needs a type parameter and so does `new_debug`. But since `[]` doesn't have an origin for the type parameter definition, it points to `new_debug` instead and leaks the internal implementation detail since all `[]` has is an type inference variable.
### ~~The Bad Fix~~
~~This PR currently tries to fix the problem by bypassing the generated function `<#[lang = "format_argument"]>::new_debug` to avoid its generic parameter (I think it is auto-generated from the argument `[_; 0]`?) from getting collected as an `InsertableGenericArg`. This is problematic because it also prevents the help from getting displayed.~~
~~I think this fix is not ideal and hard-codes the format generated code pattern, but I can't think of a better fix. I have tried asking on Zulip but no responses there yet.~~
Don't cause a cycle when formatting query description that references a FnDef
When a function returns `-> _`, we use typeck to compute what the resulting type of the body _should_ be. If we call another query inside of typeck and hit a cycle error, we attempt to report the cycle error which requires us to compute all of the query descriptions for the stack.
However, if one of the queries in that cycle has a query description that references this function as a FnDef type, we'll cause a *second* cycle error from within the cycle error reporting code, since rendering a FnDef requires us to compute its signature. This causes an unwrap to ICE, since during the *second* cycle reporting code, we try to look for a job that isn't in the active jobs list.
We can avoid this by using `with_no_queries!` when computing these query descriptions.
Fixes#107089
The only drawback is that the rendering of opaque types in cycles regresses a bit :| I'm open to alternate suggestions about how we may handle this...
Revert "review comment: Remove AST AnonTy"
This reverts commit 020cca8d36.
Revert "Ensure macros are not affected"
This reverts commit 12d18e4031.
Revert "Emit fewer errors on patterns with possible type ascription"
This reverts commit c847a01a3b.
Revert "Teach parser to understand fake anonymous enum syntax"
This reverts commit 2d82420665.
Modify primary span label for E0308
Looking at the reactions to https://hachyderm.io/`@ekuber/109622160673605438,` a lot of people seem to have trouble understanding the current output, where the primary span label on type errors talks about the specific types that diverged, but these can be deeply nested type parameters. Because of that we could see "expected i32, found u32" in the label while the note said "expected Vec<i32>, found Vec<u32>". This understandably confuses people. I believe that once people learn to read these errors it starts to make more sense, but this PR changes the output to be more in line with what people might expect, without sacrificing terseness.
Fix#68220.
The original tweet in the chain linked to, and thus the through line of links back to Anna's tweet where she named the turbofish (https://web.archive.org/web/20210911061514/https://twitter.com/whoisaldeka/status/914914008225816576) are lost as the user whoisaldeka has deleted their twitter account.
Switching to an archive link preserves this through line, allowing someone to browse back to see the point at which Anna created the turbofish, as was the original intent of including this context.
Improve unexpected close and mismatch delimiter hint in TokenTreesReader
Fixes#103882Fixes#68987Fixes#69259
The inner indentation mismatching will be covered by outer block, the new added function `report_error_prone_delim_block` will find out the error prone candidates for reporting.
Remove overlapping parts of multipart suggestions
This PR adds a debug assertion that the parts of a single substitution cannot overlap, fixes a overlapping substitution from the testsuite, and fixes https://github.com/rust-lang/rust/issues/106870.
Note that a single suggestion can still have multiple overlapping substitutions / possible edits, we just don't suggest overlapping replacements in a single edit anymore.
I've also included a fix for an unrelated bug where rustfix for `explicit_outlives_requirements` would produce multiple trailing commas for a where clause.
Teach parser to understand fake anonymous enum syntax
Parse `Ty | OtherTy` in function argument and return types.
Parse type ascription in top level patterns.
Minimally address #100741.
Recognise double-equals homoglyph
Recognise `⩵` as a homoglyph for `==`.
The first commit switches `char` to `&str`, as all previous homoglyphs corresponded to a single ASCII character, while the second implements the fix.
`@rustbot` label +A-diagnostics +A-parser
Emit a single error for contiguous sequences of unknown tokens
Closes#106101
On encountering a sequence of identical source characters which are unknown tokens, note the amount of subsequent characters and advance past them silently. The old behavior was to emit an error and 'help' note for every single one.
`@rustbot` label +A-diagnostics +A-parser
Render missing generics suggestion verbosely
It's a bit easier to read like this, especially ones that are appending new generics onto an existing list, like ": `, T`" which render somewhat poorly inline.
Also don't suggest `dyn` as a type parameter to add, even if technically that's valid in edition 2015.
Recover from where clauses placed before tuple struct bodies
Open to any suggestions regarding the phrasing of the diagnostic.
Fixes#100790.
`@rustbot` label A-diagnostics
r? diagnostics