Normalize before erasing late-bound regions in `equal_up_to_regions`
Normalize erasing regions **first**, before passing the type through a `BottomUpFolder` which erases late-bound regions too.
The root cause of this issue is due to 96d4137dee, which removes a `normalize_erasing_regions` that happens before this call to `equal_up_to_regions`. While reverting that commit might be a fix, I think it was suspicious to be erasing late-bound regions first _then_ normalizing types in the first place in `equal_up_to_regions`.
-----
I am tempted to ask the reviewer to review and `r+` this without a UI test, since the existing issues that I think this fixes are all incredibly difficult to minimize (anything hyper/warp related, given the nature of those libraries 😓) or impossible to reproduce locally (the miri test), namely:
* This recently reported issue with tokio + warp: #101430
* This issue from `@RalfJung` about Miri being broken: #101344
* This additional issue reported in a comment by `@tmandry` (issue with fuchsia + hyper): https://github.com/rust-lang/rust/issues/101344#issuecomment-1235974564
I have locally verified that the repro in #101430 is fixed with this PR, but after a couple of hours of attempting to minimize this error and either failing to actually repro the ICE, or being overwhelmed with the number of traits and functions I need to inline into a UI test, I have basically given up. Thoughts are appreciated on how best to handle this.
r? `@oli-obk` who is at the intersection of MIR and types-related stuff who may be able to give advice 😅
Try normalizing types without RevealAll in ParamEnv in MIR validation
Before, the MIR validator used RevealAll in its ParamEnv for type
checking. This could cause false negatives in some cases due to
RevealAll ParamEnvs not always use all predicates as expected here.
Since some MIR passes like inlining use RevealAll as well, keep using
it in the MIR validator too, but when it fails usign RevealAll, also
try the check without it, to stop false negatives.
Fixes#99866
cc ````````@compiler-errors```````` who nicely helped me on zulip
Before, the MIR validator used RevealAll in its ParamEnv for type
checking. This could cause false negatives in some cases due to
RevealAll ParamEnvs not always use all predicates as expected here.
Since some MIR passes like inlining use RevealAll as well, keep using
it in the MIR validator too, but when it fails usign RevealAll, also
try the check without it, to stop false negatives.
Clarify MIR semantics of storage statements
Seems worthwhile to start closing out some of the less controversial open questions about MIR semantics. Hopefully this is fairly non-controversial - it's what we implement already, and I see no reason to do anything more restrictive. cc ``@tmiasko`` who commented on this when it was discussed in the original PR that added these docs.
Change enum->int casts to not go through MIR casts.
follow-up to https://github.com/rust-lang/rust/pull/96814
this simplifies all backends and even gives LLVM more information about the return value of `Rvalue::Discriminant`, enabling optimizations in more cases.
This enhances documentation with these details and extends the validator to check these requirements
more thoroughly. As a part of this, we add a new `Deaggregated` phase, and rename other phases so
that their names more naturally correspond to what they represent.
Lazy type-alias-impl-trait
Previously opaque types were processed by
1. replacing all mentions of them with inference variables
2. memorizing these inference variables in a side-table
3. at the end of typeck, resolve the inference variables in the side table and use the resolved type as the hidden type of the opaque type
This worked okayish for `impl Trait` in return position, but required lots of roundabout type inference hacks and processing.
This PR instead stops this process of replacing opaque types with inference variables, and just keeps the opaque types around.
Whenever an opaque type `O` is compared with another type `T`, we make the comparison succeed and record `T` as the hidden type. If `O` is compared to `U` while there is a recorded hidden type for it, we grab the recorded type (`T`) and compare that against `U`. This makes implementing
* https://github.com/rust-lang/rfcs/pull/2515
much simpler (previous attempts on the inference based scheme were very prone to ICEs and general misbehaviour that was not explainable except by random implementation defined oddities).
r? `@nikomatsakis`
fixes#93411fixes#88236
by using an opaque type obligation to bubble up comparisons between opaque types and other types
Also uses proper obligation causes so that the body id works, because out of some reason nll uses body ids for logic instead of just diagnostics.