Fix `PartialEq` args when `#[const_trait]` is enabled
This is based off of your PR that enforces effects on all methods, so just see the last commits.
r? fee1-dead
Add `never_patterns` feature gate
This PR adds the feature gate and most basic parsing for the experimental `never_patterns` feature. See the tracking issue (https://github.com/rust-lang/rust/issues/118155) for details on the experiment.
`@scottmcm` has agreed to be my lang-team liaison for this experiment.
effects: Run `enforce_context_effects` for all method calls
So that we also perform checks when overloaded `PartialEq`s are called.
r? `@compiler-errors`
Rewrite exhaustiveness in one pass
This is at least my 4th attempt at this in as many years x) Previous attempts were all too complicated or too slow. But we're finally here!
The previous version of the exhaustiveness algorithm computed reachability for each arm then exhaustiveness of the whole match. Since each of these steps does roughly the same things, this rewrites the algorithm to do them all in one go. I also think this makes things much simpler.
I also rewrote the documentation of the algorithm in depth. Hopefully it's up-to-date and easier to follow now. Plz comment if anything's unclear.
r? `@oli-obk` I think you're one of the rare other people to understand the exhaustiveness algorithm?
cc `@varkor` I know you're not active anymore, but if you feel like having a look you might enjoy this :D
Fixes https://github.com/rust-lang/rust/issues/79307
Currently we always do this:
```
use rustc_fluent_macro::fluent_messages;
...
fluent_messages! { "./example.ftl" }
```
But there is no need, we can just do this everywhere:
```
rustc_fluent_macro::fluent_messages! { "./example.ftl" }
```
which is shorter.
The `fluent_messages!` macro produces uses of
`crate::{D,Subd}iagnosticMessage`, which means that every crate using
the macro must have this import:
```
use rustc_errors::{DiagnosticMessage, SubdiagnosticMessage};
```
This commit changes the macro to instead use
`rustc_errors::{D,Subd}iagnosticMessage`, which avoids the need for the
imports.
By default, `newtype_index!` types get a default `Encodable`/`Decodable`
impl. You can opt out of this with `custom_encodable`. Opting out is the
opposite to how Rust normally works with autogenerated (derived) impls.
This commit inverts the behaviour, replacing `custom_encodable` with
`encodable` which opts into the default `Encodable`/`Decodable` impl.
Only 23 of the 59 `newtype_index!` occurrences need `encodable`.
Even better, there were eight crates with a dependency on
`rustc_serialize` just from unused default `Encodable`/`Decodable`
impls. This commit removes that dependency from those eight crates.
This disentangles the row-specific tracking of `parent_row` etc from the
logical operation of specialization. This means `wildcard_row` doesn't
need to provide dummy values for `parent_row` etc anymore.
interpret: simplify handling of shifts by no longer trying to handle signed and unsigned shift amounts in the same branch
While we're at it, also update comments in codegen and MIR building related to shifts, and fix the overflow error printed by Miri on negative shift amounts.
Build pre-coroutine-transform coroutine body on error
I was accidentally building the post-transform coroutine body, rather than the pre-transform coroutine body. There's no pinning expected here yet, and the return type isn't yet transformed into `CoroutineState`.
Fixes#117670
Custom MIR: Support cleanup blocks
Cleanup blocks are declared with `bb (cleanup) = { ... }`.
`Call` and `Drop` terminators take an additional argument describing the unwind action, which is one of the following:
* `UnwindContinue()`
* `UnwindUnreachable()`
* `UnwindTerminate(reason)`, where reason is `ReasonAbi` or `ReasonInCleanup`
* `UnwindCleanup(block)`
Also support unwind resume and unwind terminate terminators:
* `UnwindResume()`
* `UnwindTerminate(reason)`
Cleanup blocks are declared with `bb (cleanup) = { ... }`.
`Call` and `Drop` terminators take an additional argument describing the
unwind action, which is one of the following:
* `UnwindContinue()`
* `UnwindUnreachable()`
* `UnwindTerminate(reason)`, where reason is `ReasonAbi` or `ReasonInCleanup`
* `UnwindCleanup(block)`
Also support unwind resume and unwind terminate terminators:
* `UnwindResume()`
* `UnwindTerminate(reason)`
generator layout: ignore fake borrows
fixes#117059
We emit fake shallow borrows in case the scrutinee place uses a `Deref` and there is a match guard. This is necessary to prevent the match guard from mutating the scrutinee: fab1054e17/compiler/rustc_mir_build/src/build/matches/mod.rs (L1250-L1265)
These fake borrows end up impacting the generator witness computation in `mir_generator_witnesses`, which causes the issue in #117059. This PR now completely ignores fake borrows during this computation. This is sound as thse are always removed after analysis and the actual computation of the generator layout happens afterwards.
Only the second commit impacts behavior, and could be backported by itself.
r? types
patterns: reject raw pointers that are not just integers
Matching against `0 as *const i32` is fine, matching against `&42 as *const i32` is not.
This extends the existing check against function pointers and wide pointers: we now uniformly reject all these pointer types during valtree construction, and then later lint because of that. See [here](https://github.com/rust-lang/rust/pull/116930#issuecomment-1784654073) for some more explanation and context.
Also fixes https://github.com/rust-lang/rust/issues/116929.
Cc `@oli-obk` `@lcnr`
Thir unsafeck fixes
- Recognise thread local statics in THIR unsafeck
- Add suggestion for unsafe_op_in_unsafe_fn
- Fix unsafe checking of let expressions
Cleanup `rustc_mir_build/../check_match.rs`
The file had become pretty unwieldy, with a fair amount of duplication. As a bonus, I discovered that we weren't running some pattern checks in if-let chains.
I recommend looking commit-by-commit. The last commit is a whim, I think it makes more sense that way but I don't hold this opinion strongly.
Support enum variants in offset_of!
This MR implements support for navigating through enum variants in `offset_of!`, placing the enum variant name in the second argument to `offset_of!`. The RFC placed it in the first argument, but I think it interacts better with nested field access in the second, as you can then write things like
```rust
offset_of!(Type, field.Variant.field)
```
Alternatively, a syntactic distinction could be made between variants and fields (e.g. `field::Variant.field`) but I'm not convinced this would be helpful.
[RFC 3308 # Enum Support](https://rust-lang.github.io/rfcs/3308-offset_of.html#enum-support-offset_ofsomeenumstructvariant-field_on_variant)
Tracking Issue #106655.
Match usize/isize exhaustively with half-open ranges
The long-awaited finale to the saga of [exhaustiveness checking for integers](https://github.com/rust-lang/rust/pull/50912)!
```rust
match 0usize {
0.. => {} // exhaustive!
}
match 0usize {
0..usize::MAX => {} // helpful error message!
}
```
Features:
- Half-open ranges behave as expected for `usize`/`isize`;
- Trying to use `0..usize::MAX` will tell you that `usize::MAX..` is missing and explain why. No more unhelpful "`_` is missing";
- Everything else stays the same.
This should unblock https://github.com/rust-lang/rust/issues/37854.
Review-wise:
- I recommend looking commit-by-commit;
- This regresses perf because of the added complexity in `IntRange`; hopefully not too much;
- I measured each `#[inline]`, they all help a bit with the perf regression (tho I don't get why);
- I did not touch MIR building; I expect there's an easy PR there that would skip unnecessary comparisons when the range is half-open.
Rollup of 7 pull requests
Successful merges:
- #116862 (Detect when trait is implemented for type and suggest importing it)
- #117389 (Some diagnostics improvements of `gen` blocks)
- #117396 (Don't treat closures/coroutine types as part of the public API)
- #117398 (Correctly handle nested or-patterns in exhaustiveness)
- #117403 (Poison check_well_formed if method receivers are invalid to prevent typeck from running on it)
- #117411 (Improve some diagnostics around `?Trait` bounds)
- #117414 (Don't normalize to an un-revealed opaque when we hit the recursion limit)
r? `@ghost`
`@rustbot` modify labels: rollup
Correctly handle nested or-patterns in exhaustiveness
I had assumed nested or-patterns were flattened, and they mostly are but not always.
Fixes https://github.com/rust-lang/rust/issues/117378
- Sort dependencies and features sections.
- Add `tidy` markers to the sorted sections so they stay sorted.
- Remove empty `[lib`] sections.
- Remove "See more keys..." comments.
Excluded files:
- rustc_codegen_{cranelift,gcc}, because they're external.
- rustc_lexer, because it has external use.
- stable_mir, because it has external use.
Allow partially moved values in match
This PR attempts to unify the behaviour between `let _ = PLACE`, `let _: TY = PLACE;` and `match PLACE { _ => {} }`.
The logical conclusion is that the `match` version should not check for uninitialised places nor check that borrows are still live.
The `match PLACE {}` case is handled by keeping a `FakeRead` in the unreachable fallback case to verify that `PLACE` has a legal value.
Schematically, `match PLACE { arms }` in surface rust becomes in MIR:
```rust
PlaceMention(PLACE)
match PLACE {
// Decision tree for the explicit arms
arms,
// An extra fallback arm
_ => {
FakeRead(ForMatchedPlace, PLACE);
unreachable
}
}
```
`match *borrow { _ => {} }` continues to check that `*borrow` is live, but does not read the value.
`match *borrow {}` both checks that `*borrow` is live, and fake-reads the value.
Continuation of ~https://github.com/rust-lang/rust/pull/102256~ ~https://github.com/rust-lang/rust/pull/104844~
Fixes https://github.com/rust-lang/rust/issues/99180https://github.com/rust-lang/rust/issues/53114
Never consider raw pointer casts to be trival
HIR typeck tries to figure out which casts are trivial by doing them as
coercions and seeing whether this works. Since HIR typeck is oblivious
of lifetimes, this doesn't work for pointer casts that only change the
lifetime of the pointee, which are, as borrowck will tell you, not
trivial.
This change makes it so that raw pointer casts are never considered
trivial.
This also incidentally fixes the "trivial cast" lint false positive on
the same code. Unfortunately, "trivial cast" lints are now never emitted
on raw pointer casts, even if they truly are trivial. This could be
fixed by also doing the lint in borrowck for raw pointers specifically.
fixes#113257
Lint `non_exhaustive_omitted_patterns` by columns
This is a rework of the `non_exhaustive_omitted_patterns` lint to make it more consistent. The intent of the lint is to help consumers of `non_exhaustive` enums ensure they stay up-to-date with all upstream variants. This rewrite fixes two cases we didn't handle well before:
First, because of details of exhaustiveness checking, the following wouldn't lint `Enum::C` as missing:
```rust
match Some(x) {
Some(Enum::A) => {}
Some(Enum::B) => {}
_ => {}
}
```
Second, because of the fundamental workings of exhaustiveness checking, the following would treat the `true` and `false` cases separately and thus lint about missing variants:
```rust
match (true, x) {
(true, Enum::A) => {}
(true, Enum::B) => {}
(false, Enum::C) => {}
_ => {}
}
```
Moreover, it would correctly not lint in the case where the pair is flipped, because of asymmetry in how exhaustiveness checking proceeds.
A drawback is that it no longer makes sense to set the lint level per-arm. This will silently break the lint for current users of it (but it's behind a feature gate so that's ok).
The new approach is now independent of the exhaustiveness algorithm; it's a separate pass that looks at patterns column by column. This is another of the motivations for this: I'm glad to move it out of the algorithm, it was akward there.
This PR is almost identical to https://github.com/rust-lang/rust/pull/111651. cc `@eholk` who reviewed it at the time. Compared to then, I'm more confident this is the right approach.
This allows coverage information to be attached to the function as a whole when
appropriate, instead of being smuggled through coverage statements in the
function's basic blocks.
As an example, this patch moves the `function_source_hash` value out of
individual `CoverageKind::Counter` statements and into the per-function info.
When synthesizing unused functions for coverage purposes, the absence of this
info is taken to indicate that a function was not eligible for coverage and
should not be synthesized.
THIR unsafety checking was getting a cycle of
function unsafety checking
-> building THIR for the function
-> evaluating pattern inline constants in the function
-> building MIR for the inline constant
-> checking unsafety of functions (so that THIR can be stolen)
This is fixed by not stealing THIR when generating MIR but instead when
unsafety checking.
This leaves an issue with pattern inline constants not being unsafety
checked because they are evaluated away when generating THIR.
To fix that we now represent inline constants in THIR patterns and
visit them in THIR unsafety checking.
use `PatKind::Error` when an ADT const value has violation
Fixes#115599
Since the [to_pat](https://github.com/rust-lang/rust/pull/111913/files#diff-6d8d99538aca600d633270051580c7a9e40b35824ea2863d9dda2c85a733b5d9R126-R155) behavior has been changed in the #111913 update, the kind of `inlined_const_ast_pat` has transformed from `PatKind::Leaf { pattern: Pat { kind: Wild, ..} } ` to `PatKind::Constant`. This caused a scenario where there are no matched candidates, leading to a testing of the candidates. This process ultimately attempts to test the string const, triggering the `bug!` invocation finally.
r? ``@oli-obk``
Format all the let-chains in compiler crates
Since rust-lang/rustfmt#5910 has landed, soon we will have support for formatting let-chains (as soon as rustfmt syncs and beta gets bumped).
This PR applies the changes [from master rustfmt to rust-lang/rust eagerly](https://rust-lang.zulipchat.com/#narrow/stream/122651-general/topic/out.20formatting.20of.20prs/near/374997516), so that the next beta bump does not have to deal with a 200+ file diff and can remain concerned with other things like `cfg(bootstrap)` -- #113637 was a pain to land, for example, because of let-else.
I will also add this commit to the ignore list after it has landed.
The commands that were run -- I'm not great at bash-foo, but this applies rustfmt to every compiler crate, and then reverts the two crates that should probably be formatted out-of-tree.
```
~/rustfmt $ ls -1d ~/rust/compiler/* | xargs -I@ cargo run --bin rustfmt -- `@/src/lib.rs` --config-path ~/rust --edition=2021 # format all of the compiler crates
~/rust $ git checkout HEAD -- compiler/rustc_codegen_{gcc,cranelift} # revert changes to cg-gcc and cg-clif
```
cc `@rust-lang/rustfmt`
r? `@WaffleLapkin` or `@Nilstrieb` who said they may be able to review this purely mechanical PR :>
cc `@Mark-Simulacrum` and `@petrochenkov,` who had some thoughts on the order of operations with big formatting changes in https://github.com/rust-lang/rust/pull/95262#issue-1178993801. I think the situation has changed since then, given that let-chains support exists on master rustfmt now, and I'm fairly confident that this formatting PR should land even if *bootstrap* rustfmt doesn't yet format let-chains in order to lessen the burden of the next beta bump.
exhaustiveness: Rework constructor splitting
`SplitWildcard` was pretty opaque. I replaced it with a more legible abstraction: `ConstructorSet` represents the set of constructors for patterns of a given type. This clarifies responsibilities: `ConstructorSet` handles one clear task, and diagnostic-related shenanigans can be done separately.
I'm quite excited, I had has this in mind for years but could never quite introduce it. This opens up possibilities, including type-specific optimisations (like using a `FxHashSet` to collect enum variants, which had been [hackily attempted some years ago](https://github.com/rust-lang/rust/pull/76918)), my one-pass rewrite (https://github.com/rust-lang/rust/pull/116042), and future librarification.
Fix overflow checking in range patterns
When a range pattern contains an overflowing literal, if we're not careful we might not notice the overflow and use the wrapped value. This makes for confusing error messages because linting against overflowing literals is only done in a later pass. So when a range is invalid we check for overflows to provide a better error.
This check didn't use to handle negative types; this PR fixes that. First commit adds tests, second cleans up without changing behavior, third does the fix.
EDIT: while I was at it, I fixed a small annoyance about the span of the overflow lint on negated literals.
Fixes https://github.com/rust-lang/rust/issues/94239
Don't store lazyness in `DefKind::TyAlias`
1. Don't store lazyness of a type alias in its `DefKind`, but instead via a query.
2. This allows us to treat type aliases as lazy if `#[feature(lazy_type_alias)]` *OR* if the alias contains a TAIT, rather than having checks for both in separate parts of the codebase.
r? `@oli-obk` cc `@fmease`
rename mir::Constant -> mir::ConstOperand, mir::ConstKind -> mir::Const
Also, be more consistent with the `to/eval_bits` methods... we had some that take a type and some that take a size, and then sometimes the one that takes a type is called `bits_for_ty`.
Turns out that `ty::Const`/`mir::ConstKind` carry their type with them, so we don't need to even pass the type to those `eval_bits` functions at all.
However this is not properly consistent yet: in `ty` we have most of the methods on `ty::Const`, but in `mir` we have them on `mir::ConstKind`. And indeed those two types are the ones that correspond to each other. So `mir::ConstantKind` should actually be renamed to `mir::Const`. But what to do with `mir::Constant`? It carries around a span, that's really more like a constant operand that appears as a MIR operand... it's more suited for `syntax.rs` than `consts.rs`, but the bigger question is, which name should it get if we want to align the `mir` and `ty` types? `ConstOperand`? `ConstOp`? `Literal`? It's not a literal but it has a field called `literal` so it would at least be consistently wrong-ish...
``@oli-obk`` any ideas?
Ensure that THIR unsafety check is done before stealing it
This ensures that THIR unsafety check is done before stealing it by running it on the typeck root instead of on a closure, which does nothing.
Fixes https://github.com/rust-lang/rust/issues/111520
Point at return type when it influences non-first `match` arm
When encountering code like
```rust
fn foo() -> i32 {
match 0 {
1 => return 0,
2 => "",
_ => 1,
}
}
```
Point at the return type and not at the prior arm, as that arm has type `!` which isn't influencing the arm corresponding to arm `2`.
Fix#78124.
Store the laziness of type aliases in their `DefKind`
Previously, we would treat paths referring to type aliases as *lazy* type aliases if the current crate had lazy type aliases enabled independently of whether the crate which the alias was defined in had the feature enabled or not.
With this PR, the laziness of a type alias depends on the crate it is defined in. This generally makes more sense to me especially if / once lazy type aliases become the default in a new edition and we need to think about *edition interoperability*:
Consider the hypothetical case where the dependency crate has an older edition (and thus eager type aliases), it exports a type alias with bounds & a where-clause (which are void but technically valid), the dependent crate has the latest edition (and thus lazy type aliases) and it uses that type alias. Arguably, the bounds should *not* be checked since at any time, the dependency crate should be allowed to change the bounds at will with a *non*-major version bump & without negatively affecting downstream crates.
As for the reverse case (dependency: lazy type aliases, dependent: eager type aliases), I guess it rules out anything from slight confusion to mild annoyance from upstream crate authors that would be caused by the compiler ignoring the bounds of their type aliases in downstream crates with older editions.
---
This fixes#114468 since before, my assumption that the type alias associated with a given weak projection was lazy (and therefore had its variances computed) did not necessarily hold in cross-crate scenarios (which [I kinda had a hunch about](https://github.com/rust-lang/rust/pull/114253#discussion_r1278608099)) as outlined above. Now it does hold.
`@rustbot` label F-lazy_type_alias
r? `@oli-obk`
Make `unconditional_recursion` warning detect recursive drops
Closes#55388
Also closes#50049 unless we want to keep it for the second example which this PR does not solve, but I think it is better to track that work in #57965.
r? `@oli-obk` since you are the mentor for #55388
Unresolved questions:
- [x] There are two false positives that must be fixed before merging (see diff). I suspect the best way to solve them is to perform analysis after drop elaboration instead of before, as now, but I have not explored that any further yet. Could that be an option? **Answer:** Yes, that solved the problem.
`@rustbot` label +T-compiler +C-enhancement +A-lint
Improve spans for indexing expressions
fixes#114388
Indexing is similar to method calls in having an arbitrary left-hand-side and then something on the right, which is the main part of the expression. Method calls already have a span for that right part, but indexing does not. This means that long method chains that use indexing have really bad spans, especially when the indexing panics and that span in coverted into a panic location.
This does the same thing as method calls for the AST and HIR, storing an extra span which is then put into the `fn_span` field in THIR.
r? compiler-errors
Indexing is similar to method calls in having an arbitrary
left-hand-side and then something on the right, which is the main part
of the expression. Method calls already have a span for that right part,
but indexing does not. This means that long method chains that use
indexing have really bad spans, especially when the indexing panics and
that span in coverted into a panic location.
This does the same thing as method calls for the AST and HIR, storing an
extra span which is then put into the `fn_span` field in THIR.
Perform OpaqueCast field projection on HIR, too.
fixes#105819
This is necessary for closure captures in 2021 edition, as they capture individual fields, not the full mentioned variables. So it may try to capture a field of an opaque (because the hidden type is known to be something with a field).
See https://github.com/rust-lang/rust/pull/99806 for when and why we added OpaqueCast to MIR.
This is necessary for closure captures in 2021 edition, as they capture individual fields, not the full mentioned variables. So it may try to capture a field of an opaque (because the hidden type is known to be something with a field).
Add a cache for `maybe_lint_level_root_bounded`
`maybe_lint_level_root_bounded` is called many times and traces node sub-paths many times. This PR adds a cache that lets many of these tracings be skipped, avoiding lots of calls to functions like `Map::attrs` and `Map::parent_id`.
r? `@cjgillot`
It makes it sound like the `ExprKind` and `Rvalue` are supposed to represent all pointer related
casts, when in reality their just used to share a some enum variants. Make it clear there these
are only coercion to make it clear why only some pointer related "casts" are in the enum.
`thir`: Add `Become` expression kind
This PR is pretty small and just adds `thir::ExprKind::Become`. I didn't include the checks that will be done on thir, since they are much more complicated and can be done in parallel with with MIR (or, well, at least I believe they can).
r? `@Nilstrieb`
Given the code
```rust
pub fn main() {
const y: i32 = 4;
let y: i32 = 3;
}
```
`y` in the let binding is actually interpreted as a constant pattern
and is not a new variable, causing confusing diagnostics about
refutable patterns in local binding.
This commit extends the note for type ascription as a constant pattern
to `AscribeUserType` patterns as well.
Ensure Fluent messages are in alphabetical order
Fixes#111847
This adds a tidy check to ensure Fluent messages are in alphabetical order, as well as sorting all existing messages. I think the error could be worded better, would appreciate suggestions.
<details>
<summary>Script used to sort files</summary>
```py
import sys
import re
fn = sys.argv[1]
with open(fn, 'r') as f:
data = f.read().split("\n")
chunks = []
cur = ""
for line in data:
if re.match(r"^([a-zA-Z0-9_]+)\s*=\s*", line):
chunks.append(cur)
cur = ""
cur += line + "\n"
chunks.append(cur)
chunks.sort()
with open(fn, 'w') as f:
f.write(''.join(chunks).strip("\n\n") + "\n")
```
</details>