atomic_load intrinsic: use const generic parameter for ordering
We have a gazillion intrinsics for the atomics because we encode the ordering into the intrinsic name rather than making it a parameter. This is particularly bad for those operations that take two orderings. Let's fix that!
This PR only converts `load`, to see if there's any feedback that would fundamentally change the strategy we pursue for the const generic intrinsics.
The first two commits are preparation and could be a separate PR if you prefer.
`@BoxyUwU` -- I hope this is a use of const generics that is unlikely to explode? All we need is a const generic of enum type. We could funnel it through an integer if we had to but an enum is obviously nicer...
`@bjorn3` it seems like the cranelift backend entirely ignores the ordering?
Add `rustc_diagnostic_item` to `sys::Mutex` methods
For an ongoing project for adding a concurrency model checker to Miri we need to be able to intercept locking/unlocking operations on standard library mutexes.
This PR adds diagnostic items to the relevant calls `lock`, `try_lock` and `unlock` for the `sys::Mutex` implementation on the targets we care about.
This PR also makes the internals of `pthread::Mutex` less public, to reduce the chance of anyone locking/unlocking a mutex without going through the intercepted methods.
r? ``@RalfJung``
Split `autodiff` into `autodiff_forward` and `autodiff_reverse`
This PR splits `#[autodiff]` macro so `#[autodiff(df, Reverse, args)]` would become `#[autodiff_reverse(df, args)]` and `#[autodiff(df, Forward, args)]` would become `#[autodiff_forwad(df, args)]`.
Rollup of 7 pull requests
Successful merges:
- #135562 (Add ignore value suggestion in closure body)
- #139635 (Finalize repeat expr inference behaviour with inferred repeat counts)
- #139668 (Handle regions equivalent to 'static in non_local_bounds)
- #140218 (HIR ty lowering: Clean up & refactor the lowering of type-relative paths)
- #140435 (use uX::from instead of _ as uX in non - const contexts)
- #141130 (rustc_on_unimplemented cleanups)
- #141286 (Querify `coroutine_hidden_types`)
Failed merges:
- #140247 (Don't build `ParamEnv` and do trait solving in `ItemCtxt`s when lowering IATs)
r? `@ghost`
`@rustbot` modify labels: rollup
Since the mode is no longer part of `meta_item`, we must insert it manually (otherwise macro expansion with `#[rustc_autodiff]` won't work).
This can be revised later if a more structured representation becomes necessary (using enums, annotated structs, etc).
Some tests are currently failing. I'll address them next.
Use intrinsics for `{f16,f32,f64,f128}::{minimum,maximum}` operations
This PR creates intrinsics for `{f16,f32,f64,f64}::{minimum,maximum}` operations.
This wasn't done when those operations were added as the LLVM support was too weak but now that LLVM has libcalls for unsupported platforms we can finally use them.
Cranelift and GCC[^1] support are partial, Cranelift doesn't support `f16` and `f128`, while GCC doesn't support `f16`.
r? `@tgross35`
try-job: aarch64-gnu
try-job: dist-various-1
try-job: dist-various-2
[^1]: https://www.gnu.org/software///gnulib/manual/html_node/Functions-in-_003cmath_002eh_003e.html
Revert "Rollup merge of #129343 - estebank:time-version, r=jieyouxu"
This reverts commit 26f75a65d7, reversing
changes made to 2572e0e8c9.
Imports are modified to fix merge conflicts and remove unused ones.
All uses have been removed. And it's nonsensical: an identifier by
definition has at least one char.
The commits adds an is-non-empty assertion to `Ident::new` to enforce
this, and converts some `Ident` constructions to use `Ident::new`.
Adding the assertion requires making `Ident::new` and
`Ident::with_dummy_span` non-const, which is no great loss.
The commit amends a couple of places that do path splitting to ensure no
empty identifiers are created.
Move `in_external_macro` to `SyntaxContext`
There are a few places in clippy where spans are passed solely to use the context, but we can't pass just the context around because of this function.
Fix `-Zremap-path-scope` rmeta handling
This PR fixes the conditional remapping (`-Zremap-path-scope`) of rmeta file paths ~~by using the `debuginfo` scope~~ by conditionally embedding the local path in addition to the remapped path.
Fixes https://github.com/rust-lang/rust/issues/139217
Add the AVX10 target features
Parent #138843
Adds the `avx10_target_feature` feature gate, and `avx10.1` and `avx10.2` target features.
It is confirmed that Intel is dropping AVX10/256 (see [this comment](https://github.com/rust-lang/rust/issues/111137#issuecomment-2795442288)), so this should be safe to implement now.
The LLVM fix for llvm/llvm-project#135394 was merged, and has been backported to LLVM20, and the patch has also been propagated to rustc in #140502
`@rustbot` label O-x86_64 O-x86_32 A-target-feature A-SIMD
Optimize the codegen for `Span::from_expansion`
See https://godbolt.org/z/bq65Y6bc4 for the difference. the new version is less than half the number of instructions.
Also tried fully writing the function by hand:
```rust
sp.ctxt_or_parent_or_marker != 0
&& (
sp.len_with_tag_or_marker == BASE_LEN_INTERNED_MARKER
|| sp.len_with_tag_or_marker & PARENT_TAG == 0
)
```
But that was no better than this PR's current use of `match_span_kind`.
Implement the internal feature `cfg_target_has_reliable_f16_f128`
Support for `f16` and `f128` is varied across targets, backends, and backend versions. Eventually we would like to reach a point where all backends support these approximately equally, but until then we have to work around some of these nuances of support being observable.
Introduce the `cfg_target_has_reliable_f16_f128` internal feature, which provides the following new configuration gates:
* `cfg(target_has_reliable_f16)`
* `cfg(target_has_reliable_f16_math)`
* `cfg(target_has_reliable_f128)`
* `cfg(target_has_reliable_f128_math)`
`reliable_f16` and `reliable_f128` indicate that basic arithmetic for the type works correctly. The `_math` versions indicate that anything relying on `libm` works correctly, since sometimes this hits a separate class of codegen bugs.
These options match configuration set by the build script at [1]. The logic for LLVM support is duplicated as-is from the same script. There are a few possible updates that will come as a follow up.
The config introduced here is not planned to ever become stable, it is only intended to replace the build scripts for `std` tests and `compiler-builtins` that don't have any way to configure based on the codegen backend.
MCP: https://github.com/rust-lang/compiler-team/issues/866
Closes: https://github.com/rust-lang/compiler-team/issues/866
[1]: 555e1d0386/library/std/build.rs (L84-L186)
---
The second commit makes use of this config to replace `cfg_{f16,f128}{,_math}` in `library/`. I omitted providing a `cfg(bootstrap)` configuration to keep things simpler since the next beta branch is in two weeks.
try-job: aarch64-gnu
try-job: i686-msvc-1
try-job: test-various
try-job: x86_64-gnu
try-job: x86_64-msvc-ext2
Async drop codegen
Async drop implementation using templated coroutine for async drop glue generation.
Scopes changes to generate `async_drop_in_place()` awaits, when async droppable objects are out-of-scope in async context.
Implementation details:
https://github.com/azhogin/posts/blob/main/async-drop-impl.md
New fields in Drop terminator (drop & async_fut). Processing in codegen/miri must validate that those fields are empty (in full version async Drop terminator will be expanded at StateTransform pass or reverted to sync version). Changes in terminator visiting to consider possible new successor (drop field).
ResumedAfterDrop messages for panic when coroutine is resumed after it is started to be async drop'ed.
Lang item for generated coroutine for async function async_drop_in_place. `async fn async_drop_in_place<T>()::{{closure0}}`.
Scopes processing for generate async drop preparations. Async drop is a hidden Yield, so potentially async drops require the same dropline preparation as for Yield terminators.
Processing in StateTransform: async drops are expanded into yield-point. Generation of async drop of coroutine itself added.
Shims for AsyncDropGlueCtorShim, AsyncDropGlue and FutureDropPoll.
```rust
#[lang = "async_drop"]
pub trait AsyncDrop {
#[allow(async_fn_in_trait)]
async fn drop(self: Pin<&mut Self>);
}
impl Drop for Foo {
fn drop(&mut self) {
println!("Foo::drop({})", self.my_resource_handle);
}
}
impl AsyncDrop for Foo {
async fn drop(self: Pin<&mut Self>) {
println!("Foo::async drop({})", self.my_resource_handle);
}
}
```
First async drop glue implementation re-worked to use the same drop elaboration code as for sync drop.
`async_drop_in_place` changed to be `async fn`. So both `async_drop_in_place` ctor and produced coroutine have their lang items (`AsyncDropInPlace`/`AsyncDropInPlacePoll`) and shim instances (`AsyncDropGlueCtorShim`/`AsyncDropGlue`).
```
pub async unsafe fn async_drop_in_place<T: ?Sized>(_to_drop: *mut T) {
}
```
AsyncDropGlue shim generation uses `elaborate_drops::elaborate_drop` to produce drop ladder (in the similar way as for sync drop glue) and then `coroutine::StateTransform` to convert function into coroutine poll.
AsyncDropGlue coroutine's layout can't be calculated for generic T, it requires known final dropee type to be generated (in StateTransform). So, `templated coroutine` was introduced here (`templated_coroutine_layout(...)` etc).
Such approach overrides the first implementation using mixing language-level futures in https://github.com/rust-lang/rust/pull/121801.
Implement a lint for implicit autoref of raw pointer dereference - take 2
*[t-lang nomination comment](https://github.com/rust-lang/rust/pull/123239#issuecomment-2727551097)*
This PR aims at implementing a lint for implicit autoref of raw pointer dereference, it is based on #103735 with suggestion and improvements from https://github.com/rust-lang/rust/pull/103735#issuecomment-1370420305.
The goal is to catch cases like this, where the user probably doesn't realise it just created a reference.
```rust
pub struct Test {
data: [u8],
}
pub fn test_len(t: *const Test) -> usize {
unsafe { (*t).data.len() } // this calls <[T]>::len(&self)
}
```
Since #103735 already went 2 times through T-lang, where they T-lang ended-up asking for a more restricted version (which is what this PR does), I would prefer this PR to be reviewed first before re-nominating it for T-lang.
----
Compared to the PR it is as based on, this PR adds 3 restrictions on the outer most expression, which must either be:
1. A deref followed by any non-deref place projection (that intermediate deref will typically be auto-inserted)
2. A method call annotated with `#[rustc_no_implicit_refs]`.
3. A deref followed by a `addr_of!` or `addr_of_mut!`. See bottom of post for details.
There are several points that are not 100% clear to me when implementing the modifications:
- ~~"4. Any number of automatically inserted deref/derefmut calls." I as never able to trigger this. Am I missing something?~~ Fixed
- Are "index" and "field" enough?
----
cc `@JakobDegen` `@WaffleLapkin`
r? `@RalfJung`
try-job: dist-various-1
try-job: dist-various-2
Support for `f16` and `f128` is varied across targets, backends, and
backend versions. Eventually we would like to reach a point where all
backends support these approximately equally, but until then we have to
work around some of these nuances of support being observable.
Introduce the `cfg_target_has_reliable_f16_f128` internal feature, which
provides the following new configuration gates:
* `cfg(target_has_reliable_f16)`
* `cfg(target_has_reliable_f16_math)`
* `cfg(target_has_reliable_f128)`
* `cfg(target_has_reliable_f128_math)`
`reliable_f16` and `reliable_f128` indicate that basic arithmetic for
the type works correctly. The `_math` versions indicate that anything
relying on `libm` works correctly, since sometimes this hits a separate
class of codegen bugs.
These options match configuration set by the build script at [1]. The
logic for LLVM support is duplicated as-is from the same script. There
are a few possible updates that will come as a follow up.
The config introduced here is not planned to ever become stable, it is
only intended to replace the build scripts for `std` tests and
`compiler-builtins` that don't have any way to configure based on the
codegen backend.
MCP: https://github.com/rust-lang/compiler-team/issues/866
Closes: https://github.com/rust-lang/compiler-team/issues/866
[1]: 555e1d0386/library/std/build.rs (L84-L186)