Rollup of 11 pull requests
Successful merges:
- rust-lang/rust#141890 (Add link to correct documentation in htmldocck.py)
- rust-lang/rust#141932 (Fix for async drop inside async gen fn)
- rust-lang/rust#141960 (Use non-2015 edition paths in tests that do not test for their resolution)
- rust-lang/rust#141968 (Run wfcheck in one big loop instead of per module)
- rust-lang/rust#141969 (Triagebot: Remove `assign.users_on_vacation`)
- rust-lang/rust#141985 (Ensure query keys are printed with reduced queries)
- rust-lang/rust#141999 (Visit the ident in `PreciseCapturingNonLifetimeArg`.)
- rust-lang/rust#142005 (Change `tag_field` to `FieldIdx` in `Variants::Multiple`)
- rust-lang/rust#142017 (Fix incorrect use of "recommend" over "recommended")
- rust-lang/rust#142024 (Don't refer to 'this tail expression' in expansion.)
- rust-lang/rust#142025 (Don't refer to 'local binding' in extern macro.)
r? `@ghost`
`@rustbot` modify labels: rollup
Deconstruct values in the THIR visitor
I continue to add deconstruction for task rust-lang/rust#141849
The changes concern a more complex part of the task `compiler/rustc_hir/src/intravisit.rs`
r? `@nnethercote`
`UsePath` contains a `SmallVec<[Res; 3]>`. This holds up to three `Res`
results, one per namespace (type, value, or macro). `lower_import_res`
takes a `PerNS<Option<Res<NodeId>>>` result and lowers it into the
`SmallVec`. This is pretty weird. The input `PerNS` makes it clear which
`Res` belongs to which namespace, but the `SmallVec` throws that
information away.
And code that operates on the `SmallVec` tends to use iteration (or even
just grabbing the first entry!) without knowing which namespace the
`Res` belongs to. Even weirder! Also, `SmallVec` is an overly flexible
type to use here, because it can contain any number of elements (even
though it's optimized for 3 in this case).
This commit changes `UsePath` so it also contains a
`PerNS<Option<Res<HirId>>>`. This type preserves more information and is
more self-documenting. The commit also changes a lot of the use sites to
access the result for a particular namespace. E.g. if you're looking up
a trait, it will be in the `Res` for the type namespace if it's present;
it's silly to look in the `Res` for the value namespace or macro
namespace. Overall I find the new code much easier to understand.
However, some use sites still iterate. These now use `present_items`
because that filters out the `None` results.
Also, `redundant_pub_crate.rs` gets a bigger change. A
`UseKind:ListStem` item gets no `Res` results, which means the old `all`
call in `is_not_macro_export` would succeed (because `all` succeeds on
an empty iterator) and the `ListStem` would be ignored. This is what we
want, but was more by luck than design. The new code detects `ListStem`
explicitly. The commit generalizes the name of that function
accordingly.
Finally, the commit also removes the `use_path` arena, because
`PerNS<Option<Res>>` impls `Copy` (unlike `SmallVec`) and it can be
allocated in the arena shared by all `Copy` types.
Specifically `TyAlias`, `Enum`, `Struct`, `Union`. So the fields match
the textual order in the source code.
The interesting part of the change is in
`compiler/rustc_hir/src/hir.rs`. The rest is extremely mechanical
refactoring.
It bugs me when variables of type `Ident` are called `name`. It leads to
silly things like `name.name`. `Ident` variables should be called
`ident`, and `name` should be used for variables of type `Symbol`.
This commit improves things by by doing `s/name/ident/` on a bunch of
`Ident` variables. Not all of them, but a decent chunk.
"Missing" patterns are possible in bare fn types (`fn f(u32)`) and
similar places. Currently these are represented in the AST with
`ast::PatKind::Ident` with no `by_ref`, no `mut`, an empty ident, and no
sub-pattern. This flows through to `{hir,thir}::PatKind::Binding` for
HIR and THIR.
This is a bit nasty. It's very non-obvious, and easy to forget to check
for the exceptional empty identifier case.
This commit adds a new variant, `PatKind::Missing`, to do it properly.
The process I followed:
- Add a `Missing` variant to `{ast,hir,thir}::PatKind`.
- Chang `parse_param_general` to produce `ast::PatKind::Missing`
instead of `ast::PatKind::Missing`.
- Look through `kw::Empty` occurrences to find functions where an
existing empty ident check needs replacing with a `PatKind::Missing`
check: `print_param`, `check_trait_item`, `is_named_param`.
- Add a `PatKind::Missing => unreachable!(),` arm to every exhaustive
match identified by the compiler.
- Find which arms are actually reachable by running the test suite,
changing them to something appropriate, usually by looking at what
would happen to a `PatKind::Ident`/`PatKind::Binding` with no ref, no
`mut`, an empty ident, and no subpattern.
Quite a few of the `unreachable!()` arms were never reached. This makes
sense because `PatKind::Missing` can't happen in every pattern, only
in places like bare fn tys and trait fn decls.
I also tried an alternative approach: modifying `ast::Param::pat` to
hold an `Option<P<Pat>>` instead of a `P<Pat>`, but that quickly turned
into a very large and painful change. Adding `PatKind::Missing` is much
easier.
Parameter patterns are lowered to an `Ident` by
`lower_fn_params_to_names`, which is used when lowering bare function
types, trait methods, and foreign functions. Currently, there are two
exceptional cases where the lowered param can become an empty `Ident`.
- If the incoming pattern is an empty `Ident`. This occurs if the
parameter is anonymous, e.g. in a bare function type.
- If the incoming pattern is neither an ident nor an underscore. Any
such parameter will have triggered a compile error (hence the
`span_delayed_bug`), but lowering still occurs.
This commit replaces these empty `Ident` results with `None`, which
eliminates a number of `kw::Empty` uses, and makes it impossible to fail
to check for these exceptional cases.
Note: the `FIXME` comment in `is_unwrap_or_empty_symbol` is removed. It
actually should have been removed in #138482, the precursor to this PR.
That PR changed the lowering of wild patterns to `_` symbols instead of
empty symbols, which made the mentioned underscore check load-bearing.
`hir::Item` has an `ident` field.
- It's always non-empty for these item kinds: `ExternCrate`, `Static`,
`Const`, `Fn`, `Macro`, `Mod`, `TyAlias`, `Enum`, `Struct`, `Union`,
Trait`, TraitAalis`.
- It's always empty for these item kinds: `ForeignMod`, `GlobalAsm`,
`Impl`.
- For `Use`, it is non-empty for `UseKind::Single` and empty for
`UseKind::{Glob,ListStem}`.
All of this is quite non-obvious; the only documentation is a single
comment saying "The name might be a dummy name in case of anonymous
items". Some sites that handle items check for an empty ident, some
don't. This is a very C-like way of doing things, but this is Rust, we
have sum types, we can do this properly and never forget to check for
the exceptional case and never YOLO possibly empty identifiers (or
possibly dummy spans) around and hope that things will work out.
The commit is large but it's mostly obvious plumbing work. Some notable
things.
- A similar transformation makes sense for `ast::Item`, but this is
already a big change. That can be done later.
- Lots of assertions are added to item lowering to ensure that
identifiers are empty/non-empty as expected. These will be removable
when `ast::Item` is done later.
- `ItemKind::Use` doesn't get an `Ident`, but `UseKind::Single` does.
- `lower_use_tree` is significantly simpler. No more confusing `&mut
Ident` to deal with.
- `ItemKind::ident` is a new method, it returns an `Option<Ident>`. It's
used with `unwrap` in a few places; sometimes it's hard to tell
exactly which item kinds might occur. None of these unwraps fail on
the test suite. It's conceivable that some might fail on alternative
input. We can deal with those if/when they happen.
- In `trait_path` the `find_map`/`if let` is replaced with a loop, and
things end up much clearer that way.
- `named_span` no longer checks for an empty name; instead the call site
now checks for a missing identifier if necessary.
- `maybe_inline_local` doesn't need the `glob` argument, it can be
computed in-function from the `renamed` argument.
- `arbitrary_source_item_ordering::check_mod` had a big `if` statement
that was just getting the ident from the item kinds that had one. It
could be mostly replaced by a single call to the new `ItemKind::ident`
method.
- `ItemKind` grows from 56 to 64 bytes, but `Item` stays the same size,
and that's what matters, because `ItemKind` only occurs within `Item`.
In `walk_item`, we call `visit_id` on every item kind. For most of them
we do it directly in `walk_item`. But for `ItemKind::Mod`,
`ItemKind::Enum`, and `ItemKind::Use` we instead do it in the `walk_*`
function called (via the `visit_*` function) from `walk_item`.
I can see no reason for this inconsistency, so this commit makes those
three cases like all the other cases, moving the `visit_id` calls into
`walk_item`. This also avoids the need for a few `HirId` arguments.
Give `global_asm` a fake body to store typeck results, represent `sym fn` as a hir expr to fix `sym fn` operands with lifetimes
There are a few intertwined problems with `sym fn` operands in both inline and global asm macros.
Specifically, unlike other anon consts, they may evaluate to a type with free regions in them without actually having an item-level type annotation to give them a "proper" type. This is in contrast to named constants, which always have an item-level type annotation, or unnamed constants which are constrained by their position (e.g. a const arg in a turbofish, or a const array length).
Today, we infer the type of the operand by looking at the HIR typeck results; however, those results are region-erased, so during borrowck we ICE since we don't expect to encounter erased regions. We can't just fill this type with something like `'static`, since we may want to use real (free) regions:
```rust
fn foo<'a>() {
asm!("/* ... */", sym bar::<&'a ()>);
}
```
The first idea may be to represent `sym fn` operands using *inline* consts instead of anon consts. This makes sense, since inline consts can reference regions from the parent body (like the `'a` in the example above). However, this introduces a problem with `global_asm!`, which doesn't *have* a parent body; inline consts *must* be associated with a parent body since they are not a body owner of their own. In #116087, I attempted to fix this by using two separate `sym` operands for global and inline asm. However, this led to a lot of confusion and also some unattractive code duplication.
In this PR, I adjust the lowering of `global_asm!` so that it's lowered in a "fake" HIR body. This body contains a single expression which is `ExprKind::InlineAsm`; we don't *use* this HIR body, but it's used in typeck and borrowck so that we can properly infer and validate the the lifetimes of `sym fn` operands.
I then adjust the lowering of `sym fn` to instead be represented with a HIR expression. This is both because it's no longer necessary to represent this operand as an anon const, since it's *just* a path expression, and also more importantly to sidestep yet another ICE (https://github.com/rust-lang/rust/issues/137179), which has to do with the existing code breaking an invariant of def-id creation and anon consts. Specifically, we are not allowed to synthesize a def-id for an anon const when that anon const contains expressions with def-ids whose parent is *not* that anon const. This is somewhat related to https://github.com/rust-lang/rust/pull/130443#issuecomment-2445678945, which is also a place in the compiler where synthesizing anon consts leads to def-id parenting issue.
As a side-effect, this consolidates the type checking for inline and global asm, so it allows us to simplify `InlineAsmCtxt` a bit. It also allows us to delete a bit of hacky code from anon const `type_of` which was there to detect `sym fn` operands specifically. This also could be generalized to support `const` asm operands with types with lifetimes in them. Since we specifically reject these consts today, I'm not going to change the representation of those consts (but they'd just be turned into inline consts).
r? oli-obk -- mostly b/c you're patient and also understand the breadth of the code that this touches, please reassign if you don't want to review this.
Fixes#111709Fixes#96304Fixes#137179
Continuing the work started in #136466.
Every method gains a `hir_` prefix, though for the ones that already
have a `par_` or `try_par_` prefix I added the `hir_` after that.
First of all, note that `Map` has three different relevant meanings.
- The `intravisit::Map` trait.
- The `map::Map` struct.
- The `NestedFilter::Map` associated type.
The `intravisit::Map` trait is impl'd twice.
- For `!`, where the methods are all unreachable.
- For `map::Map`, which gets HIR stuff from the `TyCtxt`.
As part of getting rid of `map::Map`, this commit changes `impl
intravisit::Map for map::Map` to `impl intravisit::Map for TyCtxt`. It's
fairly straightforward except various things are renamed, because the
existing names would no longer have made sense.
- `trait intravisit::Map` becomes `trait intravisit::HirTyCtxt`, so named
because it gets some HIR stuff from a `TyCtxt`.
- `NestedFilter::Map` assoc type becomes `NestedFilter::MaybeTyCtxt`,
because it's always `!` or `TyCtxt`.
- `Visitor::nested_visit_map` becomes `Visitor::maybe_tcx`.
I deliberately made the new trait and associated type names different to
avoid the old `type Map: Map` situation, which I found confusing. We now
have `type MaybeTyCtxt: HirTyCtxt`.
`rustc_span::symbol` defines some things that are re-exported from
`rustc_span`, such as `Symbol` and `sym`. But it doesn't re-export some
closely related things such as `Ident` and `kw`. So you can do `use
rustc_span::{Symbol, sym}` but you have to do `use
rustc_span::symbol::{Ident, kw}`, which is inconsistent for no good
reason.
This commit re-exports `Ident`, `kw`, and `MacroRulesNormalizedIdent`,
and changes many `rustc_span::symbol::` qualifiers in `compiler/` to
`rustc_span::`. This is a 200+ net line of code reduction, mostly
because many files with two `use rustc_span` items can be reduced to
one.