Since it's inception a long time ago, the parallel compiler and its cfgs
have been a maintenance burden. This was a necessary evil the allow
iteration while not degrading performance because of synchronization
overhead.
But this time is over. Thanks to the amazing work by the parallel
working group (and the dyn sync crimes), the parallel compiler has now
been fast enough to be shipped by default in nightly for quite a while
now.
Stable and beta have still been on the serial compiler, because they
can't use `-Zthreads` anyways.
But this is quite suboptimal:
- the maintenance burden still sucks
- we're not testing the serial compiler in nightly
Because of these reasons, it's time to end it. The serial compiler has
served us well in the years since it was split from the parallel one,
but it's over now.
Let the knight slay one head of the two-headed dragon!
We already do this for a number of crates, e.g. `rustc_middle`,
`rustc_span`, `rustc_metadata`, `rustc_span`, `rustc_errors`.
For the ones we don't, in many cases the attributes are a mess.
- There is no consistency about order of attribute kinds (e.g.
`allow`/`deny`/`feature`).
- Within attribute kind groups (e.g. the `feature` attributes),
sometimes the order is alphabetical, and sometimes there is no
particular order.
- Sometimes the attributes of a particular kind aren't even grouped
all together, e.g. there might be a `feature`, then an `allow`, then
another `feature`.
This commit extends the existing sorting to all compiler crates,
increasing consistency. If any new attribute line is added there is now
only one place it can go -- no need for arbitrary decisions.
Exceptions:
- `rustc_log`, `rustc_next_trait_solver` and `rustc_type_ir_macros`,
because they have no crate attributes.
- `rustc_codegen_gcc`, because it's quasi-external to rustc (e.g. it's
ignored in `rustfmt.toml`).
[perf] Delay the construction of early lint diag structs
Attacks some of the perf regressions from https://github.com/rust-lang/rust/pull/124417#issuecomment-2123700666.
See individual commits for details. The first three commits are not strictly necessary.
However, the 2nd one (06bc4fc671, *Remove `LintDiagnostic::msg`*) makes the main change way nicer to implement.
It's also pretty sweet on its own if I may say so myself.
With the removal of `LintDiagnostic::msg` / the `msg` param from
lint diag APIs, primary messages for lint diags are always constructed
lazily inside decorator fns rendering this wrapper type unused / useless.
Subdiagnostics don't need to be lazily translated, they can always be
eagerly translated. Eager translation is slightly more complex as we need
to have a `DiagCtxt` available to perform the translation, which involves
slightly more threading of that context.
This slight increase in complexity should enable later simplifications -
like passing `DiagCtxt` into `AddToDiagnostic` and moving Fluent messages
into the diagnostic structs rather than having them in separate files
(working on that was what led to this change).
Signed-off-by: David Wood <david@davidtw.co>
It's only has a single remaining purpose: to ensure that a diagnostic is
printed when `trimmed_def_paths` is used. It's an annoying mechanism:
weak, with odd semantics, badly named, and gets in the way of other
changes.
This commit replaces it with a simpler `must_produce_diag` mechanism,
getting rid of a diagnostic `Level` along the way.
Invert diagnostic lints.
That is, change `diagnostic_outside_of_impl` and `untranslatable_diagnostic` from `allow` to `deny`, because more than half of the compiler has been converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow` attributes, which proves that this change is warranted.
r? ````@davidtwco````
That is, change `diagnostic_outside_of_impl` and
`untranslatable_diagnostic` from `allow` to `deny`, because more than
half of the compiler has be converted to use translated diagnostics.
This commit removes more `deny` attributes than it adds `allow`
attributes, which proves that this change is warranted.
The two kinds of delayed bug have quite different semantics so a
stronger conceptual separation is nice. (`is_error` is a good example,
because the two kinds have different behaviour.)
The commit also moves the `DelayedBug` variant after `Error` in `Level`,
to reflect the fact that it's weaker than `Error` -- it might trigger an
error but also might not. (The pre-existing `downgrade_to_delayed_bug`
function also reflects the notion that delayed bugs are lower/after
normal errors.)
Plus it condenses some of the comments on `Level` into a table, for
easier reading, and introduces `can_be_top_or_sub` to indicate which
levels can be used in top-level diagnostics vs. subdiagnostics.
Finally, it renames `DiagCtxtInner::span_delayed_bugs` as
`DiagCtxtInner::delayed_bugs`. The `span_` prefix is unnecessary because
some delayed bugs don't have a span.
- Sort dependencies and features sections.
- Add `tidy` markers to the sorted sections so they stay sorted.
- Remove empty `[lib`] sections.
- Remove "See more keys..." comments.
Excluded files:
- rustc_codegen_{cranelift,gcc}, because they're external.
- rustc_lexer, because it has external use.
- stable_mir, because it has external use.
It lints against features that are inteded to be internal to the
compiler and standard library. Implements MCP #596.
We allow `internal_features` in the standard library and compiler as those
use many features and this _is_ the standard library from the "internal to the compiler and
standard library" after all.
Marking some features as internal wasn't exactly the most scientific approach, I just marked some
mostly obvious features. While there is a categorization in the macro,
it's not very well upheld (should probably be fixed in another PR).
We always pass `-Ainternal_features` in the testsuite
About 400 UI tests and several other tests use internal features.
Instead of throwing the attribute on each one, just always allow them.
There's nothing wrong with testing internal features^^
During borrowck, the `MultiSpan` from a buffered diagnostic is cloned and
used to emit a delayed bug indicating a diagnostic was buffered - when
the buffered diagnostic is translated, then the cloned `MultiSpan` may
contain labels which can only render with the diagnostic's arguments, but
the delayed bug being emitted won't have those arguments. Adds a function
which clones `MultiSpan` without also cloning the contained labels, and
use this function when creating the buffered diagnostic delayed bug.
Signed-off-by: David Wood <david@davidtw.co>
Implement rust-lang/compiler-team#578.
When an ICE is encountered on nightly releases, the new rustc panic
handler will also write the contents of the backtrace to disk. If any
`delay_span_bug`s are encountered, their backtrace is also added to the
file. The platform and rustc version will also be collected.
Each of `{D,Subd}iagnosticMessage::{Str,Eager}` has a comment:
```
// FIXME(davidtwco): can a `Cow<'static, str>` be used here?
```
This commit answers that question in the affirmative. It's not the most
compelling change ever, but it might be worth merging.
This requires changing the `impl<'a> From<&'a str>` impls to `impl
From<&'static str>`, which involves a bunch of knock-on changes that
require/result in call sites being a little more precise about exactly
what kind of string they use to create errors, and not just `&str`. This
will result in fewer unnecessary allocations, though this will not have
any notable perf effects given that these are error paths.
Note that I was lazy within Clippy, using `to_string` in a few places to
preserve the existing string imprecision. I could have used `impl
Into<{D,Subd}iagnosticMessage>` in various places as is done in the
compiler, but that would have required changes to *many* call sites
(mostly changing `&format("...")` to `format!("...")`) which didn't seem
worthwhile.
Currently a `{D,Subd}iagnosticMessage` can be created from any type that
impls `Into<String>`. That includes `&str`, `String`, and `Cow<'static,
str>`, which are reasonable. It also includes `&String`, which is pretty
weird, and results in many places making unnecessary allocations for
patterns like this:
```
self.fatal(&format!(...))
```
This creates a string with `format!`, takes a reference, passes the
reference to `fatal`, which does an `into()`, which clones the
reference, doing a second allocation. Two allocations for a single
string, bleh.
This commit changes the `From` impls so that you can only create a
`{D,Subd}iagnosticMessage` from `&str`, `String`, or `Cow<'static,
str>`. This requires changing all the places that currently create one
from a `&String`. Most of these are of the `&format!(...)` form
described above; each one removes an unnecessary static `&`, plus an
allocation when executed. There are also a few places where the existing
use of `&String` was more reasonable; these now just use `clone()` at
the call site.
As well as making the code nicer and more efficient, this is a step
towards possibly using `Cow<'static, str>` in
`{D,Subd}iagnosticMessage::{Str,Eager}`. That would require changing
the `From<&'a str>` impls to `From<&'static str>`, which is doable, but
I'm not yet sure if it's worthwhile.
Fluent, with all the icu4x it brings in, takes quite some time to
compile. `fluent_messages!` is only needed in further downstream rustc
crates, but is blocking more upstream crates like `rustc_index`. By
splitting it out, we allow `rustc_macros` to be compiled earlier, which
speeds up `x check compiler` by about 5 seconds (and even more after the
needless dependency on `serde_json` is removed from
`rustc_data_structures`).
This makes it easier to open the messages file while developing on features.
The commit was the result of automatted changes:
for p in compiler/rustc_*; do mv $p/locales/en-US.ftl $p/messages.ftl; rmdir $p/locales; done
for p in compiler/rustc_*; do sed -i "s#\.\./locales/en-US.ftl#../messages.ftl#" $p/src/lib.rs; done
Extend `CodegenBackend` trait with a function returning the translation
resources from the codegen backend, which can be added to the complete
list of resources provided to the emitter.
Signed-off-by: David Wood <david.wood@huawei.com>
Instead of loading the Fluent resources for every crate in
`rustc_error_messages`, each crate generates typed identifiers for its
own diagnostics and creates a static which are pulled together in the
`rustc_driver` crate and provided to the diagnostic emitter.
Signed-off-by: David Wood <david.wood@huawei.com>
Most tests involving save-analysis were removed, but I kept a few where
the `-Zsave-analysis` was an add-on to the main thing being tested,
rather than the main thing being tested.
For `x.py install`, the `rust-analysis` target has been removed.
For `x.py dist`, the `rust-analysis` target has been kept in a
degenerate form: it just produces a single file `reduced.json`
indicating that save-analysis has been removed. This is necessary for
rustup to keep working.
Closes#43606.