Move insert_use util to utils

This commit is contained in:
Aleksey Kladov 2020-02-28 21:53:20 +01:00
parent d2bf2adc27
commit ff42008679
5 changed files with 539 additions and 534 deletions

View File

@ -1,6 +1,7 @@
use crate::{
assist_ctx::{Assist, AssistCtx},
insert_use_statement, AssistId,
utils::insert_use_statement,
AssistId,
};
use hir::{
AsAssocItem, AssocItemContainer, ModPath, Module, ModuleDef, PathResolution, Semantics, Trait,

View File

@ -1,42 +1,12 @@
use hir::{self, ModPath};
use ra_syntax::{
ast::{self, NameOwner},
AstNode, Direction, SmolStr,
SyntaxKind::{PATH, PATH_SEGMENT},
SyntaxNode, TextRange, T,
};
use ra_text_edit::TextEditBuilder;
use hir;
use ra_syntax::{ast, AstNode, SmolStr, TextRange};
use crate::{
assist_ctx::{Assist, AssistCtx},
utils::insert_use_statement,
AssistId,
};
/// Creates and inserts a use statement for the given path to import.
/// The use statement is inserted in the scope most appropriate to the
/// the cursor position given, additionally merged with the existing use imports.
pub fn insert_use_statement(
// Ideally the position of the cursor, used to
position: &SyntaxNode,
// The statement to use as anchor (last resort)
anchor: &SyntaxNode,
path_to_import: &ModPath,
edit: &mut TextEditBuilder,
) {
let target = path_to_import.to_string().split("::").map(SmolStr::new).collect::<Vec<_>>();
let container = position.ancestors().find_map(|n| {
if let Some(module) = ast::Module::cast(n.clone()) {
return module.item_list().map(|it| it.syntax().clone());
}
ast::SourceFile::cast(n).map(|it| it.syntax().clone())
});
if let Some(container) = container {
let action = best_action_for_target(container, anchor.clone(), &target);
make_assist(&action, &target, edit);
}
}
// Assist: replace_qualified_name_with_use
//
// Adds a use statement for a given fully-qualified name.
@ -76,509 +46,26 @@ pub(crate) fn replace_qualified_name_with_use(ctx: AssistCtx) -> Option<Assist>
AssistId("replace_qualified_name_with_use"),
"Replace qualified path with use",
|edit| {
replace_with_use(&position, &path, &segments, edit.text_edit_builder());
let path_to_import = hir_path.mod_path().clone();
insert_use_statement(
&position,
&path.syntax(),
&path_to_import,
edit.text_edit_builder(),
);
if let Some(last) = path.segment() {
// Here we are assuming the assist will provide a correct use statement
// so we can delete the path qualifier
edit.delete(TextRange::from_to(
path.syntax().text_range().start(),
last.syntax().text_range().start(),
));
}
},
)
}
fn collect_path_segments_raw(
segments: &mut Vec<ast::PathSegment>,
mut path: ast::Path,
) -> Option<usize> {
let oldlen = segments.len();
loop {
let mut children = path.syntax().children_with_tokens();
let (first, second, third) = (
children.next().map(|n| (n.clone(), n.kind())),
children.next().map(|n| (n.clone(), n.kind())),
children.next().map(|n| (n.clone(), n.kind())),
);
match (first, second, third) {
(Some((subpath, PATH)), Some((_, T![::])), Some((segment, PATH_SEGMENT))) => {
path = ast::Path::cast(subpath.as_node()?.clone())?;
segments.push(ast::PathSegment::cast(segment.as_node()?.clone())?);
}
(Some((segment, PATH_SEGMENT)), _, _) => {
segments.push(ast::PathSegment::cast(segment.as_node()?.clone())?);
break;
}
(_, _, _) => return None,
}
}
// We need to reverse only the new added segments
let only_new_segments = segments.split_at_mut(oldlen).1;
only_new_segments.reverse();
Some(segments.len() - oldlen)
}
fn fmt_segments_raw(segments: &[SmolStr], buf: &mut String) {
let mut iter = segments.iter();
if let Some(s) = iter.next() {
buf.push_str(s);
}
for s in iter {
buf.push_str("::");
buf.push_str(s);
}
}
/// Returns the number of common segments.
fn compare_path_segments(left: &[SmolStr], right: &[ast::PathSegment]) -> usize {
left.iter().zip(right).take_while(|(l, r)| compare_path_segment(l, r)).count()
}
fn compare_path_segment(a: &SmolStr, b: &ast::PathSegment) -> bool {
if let Some(kb) = b.kind() {
match kb {
ast::PathSegmentKind::Name(nameref_b) => a == nameref_b.text(),
ast::PathSegmentKind::SelfKw => a == "self",
ast::PathSegmentKind::SuperKw => a == "super",
ast::PathSegmentKind::CrateKw => a == "crate",
ast::PathSegmentKind::Type { .. } => false, // not allowed in imports
}
} else {
false
}
}
fn compare_path_segment_with_name(a: &SmolStr, b: &ast::Name) -> bool {
a == b.text()
}
#[derive(Clone, Debug)]
enum ImportAction {
Nothing,
// Add a brand new use statement.
AddNewUse {
anchor: Option<SyntaxNode>, // anchor node
add_after_anchor: bool,
},
// To split an existing use statement creating a nested import.
AddNestedImport {
// how may segments matched with the target path
common_segments: usize,
path_to_split: ast::Path,
// the first segment of path_to_split we want to add into the new nested list
first_segment_to_split: Option<ast::PathSegment>,
// Wether to add 'self' in addition to the target path
add_self: bool,
},
// To add the target path to an existing nested import tree list.
AddInTreeList {
common_segments: usize,
// The UseTreeList where to add the target path
tree_list: ast::UseTreeList,
add_self: bool,
},
}
impl ImportAction {
fn add_new_use(anchor: Option<SyntaxNode>, add_after_anchor: bool) -> Self {
ImportAction::AddNewUse { anchor, add_after_anchor }
}
fn add_nested_import(
common_segments: usize,
path_to_split: ast::Path,
first_segment_to_split: Option<ast::PathSegment>,
add_self: bool,
) -> Self {
ImportAction::AddNestedImport {
common_segments,
path_to_split,
first_segment_to_split,
add_self,
}
}
fn add_in_tree_list(
common_segments: usize,
tree_list: ast::UseTreeList,
add_self: bool,
) -> Self {
ImportAction::AddInTreeList { common_segments, tree_list, add_self }
}
fn better(left: ImportAction, right: ImportAction) -> ImportAction {
if left.is_better(&right) {
left
} else {
right
}
}
fn is_better(&self, other: &ImportAction) -> bool {
match (self, other) {
(ImportAction::Nothing, _) => true,
(ImportAction::AddInTreeList { .. }, ImportAction::Nothing) => false,
(
ImportAction::AddNestedImport { common_segments: n, .. },
ImportAction::AddInTreeList { common_segments: m, .. },
)
| (
ImportAction::AddInTreeList { common_segments: n, .. },
ImportAction::AddNestedImport { common_segments: m, .. },
)
| (
ImportAction::AddInTreeList { common_segments: n, .. },
ImportAction::AddInTreeList { common_segments: m, .. },
)
| (
ImportAction::AddNestedImport { common_segments: n, .. },
ImportAction::AddNestedImport { common_segments: m, .. },
) => n > m,
(ImportAction::AddInTreeList { .. }, _) => true,
(ImportAction::AddNestedImport { .. }, ImportAction::Nothing) => false,
(ImportAction::AddNestedImport { .. }, _) => true,
(ImportAction::AddNewUse { .. }, _) => false,
}
}
}
// Find out the best ImportAction to import target path against current_use_tree.
// If current_use_tree has a nested import the function gets called recursively on every UseTree inside a UseTreeList.
fn walk_use_tree_for_best_action(
current_path_segments: &mut Vec<ast::PathSegment>, // buffer containing path segments
current_parent_use_tree_list: Option<ast::UseTreeList>, // will be Some value if we are in a nested import
current_use_tree: ast::UseTree, // the use tree we are currently examinating
target: &[SmolStr], // the path we want to import
) -> ImportAction {
// We save the number of segments in the buffer so we can restore the correct segments
// before returning. Recursive call will add segments so we need to delete them.
let prev_len = current_path_segments.len();
let tree_list = current_use_tree.use_tree_list();
let alias = current_use_tree.alias();
let path = match current_use_tree.path() {
Some(path) => path,
None => {
// If the use item don't have a path, it means it's broken (syntax error)
return ImportAction::add_new_use(
current_use_tree
.syntax()
.ancestors()
.find_map(ast::UseItem::cast)
.map(|it| it.syntax().clone()),
true,
);
}
};
// This can happen only if current_use_tree is a direct child of a UseItem
if let Some(name) = alias.and_then(|it| it.name()) {
if compare_path_segment_with_name(&target[0], &name) {
return ImportAction::Nothing;
}
}
collect_path_segments_raw(current_path_segments, path.clone());
// We compare only the new segments added in the line just above.
// The first prev_len segments were already compared in 'parent' recursive calls.
let left = target.split_at(prev_len).1;
let right = current_path_segments.split_at(prev_len).1;
let common = compare_path_segments(left, &right);
let mut action = match common {
0 => ImportAction::add_new_use(
// e.g: target is std::fmt and we can have
// use foo::bar
// We add a brand new use statement
current_use_tree
.syntax()
.ancestors()
.find_map(ast::UseItem::cast)
.map(|it| it.syntax().clone()),
true,
),
common if common == left.len() && left.len() == right.len() => {
// e.g: target is std::fmt and we can have
// 1- use std::fmt;
// 2- use std::fmt::{ ... }
if let Some(list) = tree_list {
// In case 2 we need to add self to the nested list
// unless it's already there
let has_self = list.use_trees().map(|it| it.path()).any(|p| {
p.and_then(|it| it.segment())
.and_then(|it| it.kind())
.filter(|k| *k == ast::PathSegmentKind::SelfKw)
.is_some()
});
if has_self {
ImportAction::Nothing
} else {
ImportAction::add_in_tree_list(current_path_segments.len(), list, true)
}
} else {
// Case 1
ImportAction::Nothing
}
}
common if common != left.len() && left.len() == right.len() => {
// e.g: target is std::fmt and we have
// use std::io;
// We need to split.
let segments_to_split = current_path_segments.split_at(prev_len + common).1;
ImportAction::add_nested_import(
prev_len + common,
path,
Some(segments_to_split[0].clone()),
false,
)
}
common if common == right.len() && left.len() > right.len() => {
// e.g: target is std::fmt and we can have
// 1- use std;
// 2- use std::{ ... };
// fallback action
let mut better_action = ImportAction::add_new_use(
current_use_tree
.syntax()
.ancestors()
.find_map(ast::UseItem::cast)
.map(|it| it.syntax().clone()),
true,
);
if let Some(list) = tree_list {
// Case 2, check recursively if the path is already imported in the nested list
for u in list.use_trees() {
let child_action = walk_use_tree_for_best_action(
current_path_segments,
Some(list.clone()),
u,
target,
);
if child_action.is_better(&better_action) {
better_action = child_action;
if let ImportAction::Nothing = better_action {
return better_action;
}
}
}
} else {
// Case 1, split adding self
better_action = ImportAction::add_nested_import(prev_len + common, path, None, true)
}
better_action
}
common if common == left.len() && left.len() < right.len() => {
// e.g: target is std::fmt and we can have
// use std::fmt::Debug;
let segments_to_split = current_path_segments.split_at(prev_len + common).1;
ImportAction::add_nested_import(
prev_len + common,
path,
Some(segments_to_split[0].clone()),
true,
)
}
common if common < left.len() && common < right.len() => {
// e.g: target is std::fmt::nested::Debug
// use std::fmt::Display
let segments_to_split = current_path_segments.split_at(prev_len + common).1;
ImportAction::add_nested_import(
prev_len + common,
path,
Some(segments_to_split[0].clone()),
false,
)
}
_ => unreachable!(),
};
// If we are inside a UseTreeList adding a use statement become adding to the existing
// tree list.
action = match (current_parent_use_tree_list, action.clone()) {
(Some(use_tree_list), ImportAction::AddNewUse { .. }) => {
ImportAction::add_in_tree_list(prev_len, use_tree_list, false)
}
(_, _) => action,
};
// We remove the segments added
current_path_segments.truncate(prev_len);
action
}
fn best_action_for_target(
container: SyntaxNode,
anchor: SyntaxNode,
target: &[SmolStr],
) -> ImportAction {
let mut storage = Vec::with_capacity(16); // this should be the only allocation
let best_action = container
.children()
.filter_map(ast::UseItem::cast)
.filter_map(|it| it.use_tree())
.map(|u| walk_use_tree_for_best_action(&mut storage, None, u, target))
.fold(None, |best, a| match best {
Some(best) => Some(ImportAction::better(best, a)),
None => Some(a),
});
match best_action {
Some(action) => action,
None => {
// We have no action and no UseItem was found in container so we find
// another item and we use it as anchor.
// If there are no items above, we choose the target path itself as anchor.
// todo: we should include even whitespace blocks as anchor candidates
let anchor = container
.children()
.find(|n| n.text_range().start() < anchor.text_range().start())
.or_else(|| Some(anchor));
let add_after_anchor = anchor
.clone()
.and_then(ast::Attr::cast)
.map(|attr| attr.kind() == ast::AttrKind::Inner)
.unwrap_or(false);
ImportAction::add_new_use(anchor, add_after_anchor)
}
}
}
fn make_assist(action: &ImportAction, target: &[SmolStr], edit: &mut TextEditBuilder) {
match action {
ImportAction::AddNewUse { anchor, add_after_anchor } => {
make_assist_add_new_use(anchor, *add_after_anchor, target, edit)
}
ImportAction::AddInTreeList { common_segments, tree_list, add_self } => {
// We know that the fist n segments already exists in the use statement we want
// to modify, so we want to add only the last target.len() - n segments.
let segments_to_add = target.split_at(*common_segments).1;
make_assist_add_in_tree_list(tree_list, segments_to_add, *add_self, edit)
}
ImportAction::AddNestedImport {
common_segments,
path_to_split,
first_segment_to_split,
add_self,
} => {
let segments_to_add = target.split_at(*common_segments).1;
make_assist_add_nested_import(
path_to_split,
first_segment_to_split,
segments_to_add,
*add_self,
edit,
)
}
_ => {}
}
}
fn make_assist_add_new_use(
anchor: &Option<SyntaxNode>,
after: bool,
target: &[SmolStr],
edit: &mut TextEditBuilder,
) {
if let Some(anchor) = anchor {
let indent = ra_fmt::leading_indent(anchor);
let mut buf = String::new();
if after {
buf.push_str("\n");
if let Some(spaces) = &indent {
buf.push_str(spaces);
}
}
buf.push_str("use ");
fmt_segments_raw(target, &mut buf);
buf.push_str(";");
if !after {
buf.push_str("\n\n");
if let Some(spaces) = &indent {
buf.push_str(&spaces);
}
}
let position = if after { anchor.text_range().end() } else { anchor.text_range().start() };
edit.insert(position, buf);
}
}
fn make_assist_add_in_tree_list(
tree_list: &ast::UseTreeList,
target: &[SmolStr],
add_self: bool,
edit: &mut TextEditBuilder,
) {
let last = tree_list.use_trees().last();
if let Some(last) = last {
let mut buf = String::new();
let comma = last.syntax().siblings(Direction::Next).find(|n| n.kind() == T![,]);
let offset = if let Some(comma) = comma {
comma.text_range().end()
} else {
buf.push_str(",");
last.syntax().text_range().end()
};
if add_self {
buf.push_str(" self")
} else {
buf.push_str(" ");
}
fmt_segments_raw(target, &mut buf);
edit.insert(offset, buf);
} else {
}
}
fn make_assist_add_nested_import(
path: &ast::Path,
first_segment_to_split: &Option<ast::PathSegment>,
target: &[SmolStr],
add_self: bool,
edit: &mut TextEditBuilder,
) {
let use_tree = path.syntax().ancestors().find_map(ast::UseTree::cast);
if let Some(use_tree) = use_tree {
let (start, add_colon_colon) = if let Some(first_segment_to_split) = first_segment_to_split
{
(first_segment_to_split.syntax().text_range().start(), false)
} else {
(use_tree.syntax().text_range().end(), true)
};
let end = use_tree.syntax().text_range().end();
let mut buf = String::new();
if add_colon_colon {
buf.push_str("::");
}
buf.push_str("{");
if add_self {
buf.push_str("self, ");
}
fmt_segments_raw(target, &mut buf);
if !target.is_empty() {
buf.push_str(", ");
}
edit.insert(start, buf);
edit.insert(end, "}".to_string());
}
}
fn replace_with_use(
container: &SyntaxNode,
path: &ast::Path,
target: &[SmolStr],
edit: &mut TextEditBuilder,
) {
let action = best_action_for_target(container.clone(), path.syntax().clone(), target);
make_assist(&action, target, edit);
if let Some(last) = path.segment() {
// Here we are assuming the assist will provide a correct use statement
// so we can delete the path qualifier
edit.delete(TextRange::from_to(
path.syntax().text_range().start(),
last.syntax().text_range().start(),
));
}
}
fn collect_hir_path_segments(path: &hir::Path) -> Option<Vec<SmolStr>> {
let mut ps = Vec::<SmolStr>::with_capacity(10);
match path.kind() {

View File

@ -18,7 +18,6 @@ use ra_syntax::{TextRange, TextUnit};
use ra_text_edit::TextEdit;
pub(crate) use crate::assist_ctx::{Assist, AssistCtx, AssistHandler};
pub use crate::handlers::replace_qualified_name_with_use::insert_use_statement;
use hir::Semantics;
/// Unique identifier of the assist, should not be shown to the user

View File

@ -1,4 +1,5 @@
//! Assorted functions shared by several assists.
pub(crate) mod insert_use;
use hir::Semantics;
use ra_ide_db::RootDatabase;
@ -8,6 +9,8 @@ use ra_syntax::{
};
use rustc_hash::FxHashSet;
pub use insert_use::insert_use_statement;
pub fn get_missing_impl_items(
sema: &Semantics<RootDatabase>,
impl_block: &ast::ImplBlock,

View File

@ -0,0 +1,515 @@
//! Handle syntactic aspects of inserting a new `use`.
use hir::{self, ModPath};
use ra_syntax::{
ast::{self, NameOwner},
AstNode, Direction, SmolStr,
SyntaxKind::{PATH, PATH_SEGMENT},
SyntaxNode, T,
};
use ra_text_edit::TextEditBuilder;
/// Creates and inserts a use statement for the given path to import.
/// The use statement is inserted in the scope most appropriate to the
/// the cursor position given, additionally merged with the existing use imports.
pub fn insert_use_statement(
// Ideally the position of the cursor, used to
position: &SyntaxNode,
// The statement to use as anchor (last resort)
anchor: &SyntaxNode,
path_to_import: &ModPath,
edit: &mut TextEditBuilder,
) {
let target = path_to_import.to_string().split("::").map(SmolStr::new).collect::<Vec<_>>();
let container = position.ancestors().find_map(|n| {
if let Some(module) = ast::Module::cast(n.clone()) {
return module.item_list().map(|it| it.syntax().clone());
}
ast::SourceFile::cast(n).map(|it| it.syntax().clone())
});
if let Some(container) = container {
let action = best_action_for_target(container, anchor.clone(), &target);
make_assist(&action, &target, edit);
}
}
fn collect_path_segments_raw(
segments: &mut Vec<ast::PathSegment>,
mut path: ast::Path,
) -> Option<usize> {
let oldlen = segments.len();
loop {
let mut children = path.syntax().children_with_tokens();
let (first, second, third) = (
children.next().map(|n| (n.clone(), n.kind())),
children.next().map(|n| (n.clone(), n.kind())),
children.next().map(|n| (n.clone(), n.kind())),
);
match (first, second, third) {
(Some((subpath, PATH)), Some((_, T![::])), Some((segment, PATH_SEGMENT))) => {
path = ast::Path::cast(subpath.as_node()?.clone())?;
segments.push(ast::PathSegment::cast(segment.as_node()?.clone())?);
}
(Some((segment, PATH_SEGMENT)), _, _) => {
segments.push(ast::PathSegment::cast(segment.as_node()?.clone())?);
break;
}
(_, _, _) => return None,
}
}
// We need to reverse only the new added segments
let only_new_segments = segments.split_at_mut(oldlen).1;
only_new_segments.reverse();
Some(segments.len() - oldlen)
}
fn fmt_segments_raw(segments: &[SmolStr], buf: &mut String) {
let mut iter = segments.iter();
if let Some(s) = iter.next() {
buf.push_str(s);
}
for s in iter {
buf.push_str("::");
buf.push_str(s);
}
}
/// Returns the number of common segments.
fn compare_path_segments(left: &[SmolStr], right: &[ast::PathSegment]) -> usize {
left.iter().zip(right).take_while(|(l, r)| compare_path_segment(l, r)).count()
}
fn compare_path_segment(a: &SmolStr, b: &ast::PathSegment) -> bool {
if let Some(kb) = b.kind() {
match kb {
ast::PathSegmentKind::Name(nameref_b) => a == nameref_b.text(),
ast::PathSegmentKind::SelfKw => a == "self",
ast::PathSegmentKind::SuperKw => a == "super",
ast::PathSegmentKind::CrateKw => a == "crate",
ast::PathSegmentKind::Type { .. } => false, // not allowed in imports
}
} else {
false
}
}
fn compare_path_segment_with_name(a: &SmolStr, b: &ast::Name) -> bool {
a == b.text()
}
#[derive(Clone, Debug)]
enum ImportAction {
Nothing,
// Add a brand new use statement.
AddNewUse {
anchor: Option<SyntaxNode>, // anchor node
add_after_anchor: bool,
},
// To split an existing use statement creating a nested import.
AddNestedImport {
// how may segments matched with the target path
common_segments: usize,
path_to_split: ast::Path,
// the first segment of path_to_split we want to add into the new nested list
first_segment_to_split: Option<ast::PathSegment>,
// Wether to add 'self' in addition to the target path
add_self: bool,
},
// To add the target path to an existing nested import tree list.
AddInTreeList {
common_segments: usize,
// The UseTreeList where to add the target path
tree_list: ast::UseTreeList,
add_self: bool,
},
}
impl ImportAction {
fn add_new_use(anchor: Option<SyntaxNode>, add_after_anchor: bool) -> Self {
ImportAction::AddNewUse { anchor, add_after_anchor }
}
fn add_nested_import(
common_segments: usize,
path_to_split: ast::Path,
first_segment_to_split: Option<ast::PathSegment>,
add_self: bool,
) -> Self {
ImportAction::AddNestedImport {
common_segments,
path_to_split,
first_segment_to_split,
add_self,
}
}
fn add_in_tree_list(
common_segments: usize,
tree_list: ast::UseTreeList,
add_self: bool,
) -> Self {
ImportAction::AddInTreeList { common_segments, tree_list, add_self }
}
fn better(left: ImportAction, right: ImportAction) -> ImportAction {
if left.is_better(&right) {
left
} else {
right
}
}
fn is_better(&self, other: &ImportAction) -> bool {
match (self, other) {
(ImportAction::Nothing, _) => true,
(ImportAction::AddInTreeList { .. }, ImportAction::Nothing) => false,
(
ImportAction::AddNestedImport { common_segments: n, .. },
ImportAction::AddInTreeList { common_segments: m, .. },
)
| (
ImportAction::AddInTreeList { common_segments: n, .. },
ImportAction::AddNestedImport { common_segments: m, .. },
)
| (
ImportAction::AddInTreeList { common_segments: n, .. },
ImportAction::AddInTreeList { common_segments: m, .. },
)
| (
ImportAction::AddNestedImport { common_segments: n, .. },
ImportAction::AddNestedImport { common_segments: m, .. },
) => n > m,
(ImportAction::AddInTreeList { .. }, _) => true,
(ImportAction::AddNestedImport { .. }, ImportAction::Nothing) => false,
(ImportAction::AddNestedImport { .. }, _) => true,
(ImportAction::AddNewUse { .. }, _) => false,
}
}
}
// Find out the best ImportAction to import target path against current_use_tree.
// If current_use_tree has a nested import the function gets called recursively on every UseTree inside a UseTreeList.
fn walk_use_tree_for_best_action(
current_path_segments: &mut Vec<ast::PathSegment>, // buffer containing path segments
current_parent_use_tree_list: Option<ast::UseTreeList>, // will be Some value if we are in a nested import
current_use_tree: ast::UseTree, // the use tree we are currently examinating
target: &[SmolStr], // the path we want to import
) -> ImportAction {
// We save the number of segments in the buffer so we can restore the correct segments
// before returning. Recursive call will add segments so we need to delete them.
let prev_len = current_path_segments.len();
let tree_list = current_use_tree.use_tree_list();
let alias = current_use_tree.alias();
let path = match current_use_tree.path() {
Some(path) => path,
None => {
// If the use item don't have a path, it means it's broken (syntax error)
return ImportAction::add_new_use(
current_use_tree
.syntax()
.ancestors()
.find_map(ast::UseItem::cast)
.map(|it| it.syntax().clone()),
true,
);
}
};
// This can happen only if current_use_tree is a direct child of a UseItem
if let Some(name) = alias.and_then(|it| it.name()) {
if compare_path_segment_with_name(&target[0], &name) {
return ImportAction::Nothing;
}
}
collect_path_segments_raw(current_path_segments, path.clone());
// We compare only the new segments added in the line just above.
// The first prev_len segments were already compared in 'parent' recursive calls.
let left = target.split_at(prev_len).1;
let right = current_path_segments.split_at(prev_len).1;
let common = compare_path_segments(left, &right);
let mut action = match common {
0 => ImportAction::add_new_use(
// e.g: target is std::fmt and we can have
// use foo::bar
// We add a brand new use statement
current_use_tree
.syntax()
.ancestors()
.find_map(ast::UseItem::cast)
.map(|it| it.syntax().clone()),
true,
),
common if common == left.len() && left.len() == right.len() => {
// e.g: target is std::fmt and we can have
// 1- use std::fmt;
// 2- use std::fmt::{ ... }
if let Some(list) = tree_list {
// In case 2 we need to add self to the nested list
// unless it's already there
let has_self = list.use_trees().map(|it| it.path()).any(|p| {
p.and_then(|it| it.segment())
.and_then(|it| it.kind())
.filter(|k| *k == ast::PathSegmentKind::SelfKw)
.is_some()
});
if has_self {
ImportAction::Nothing
} else {
ImportAction::add_in_tree_list(current_path_segments.len(), list, true)
}
} else {
// Case 1
ImportAction::Nothing
}
}
common if common != left.len() && left.len() == right.len() => {
// e.g: target is std::fmt and we have
// use std::io;
// We need to split.
let segments_to_split = current_path_segments.split_at(prev_len + common).1;
ImportAction::add_nested_import(
prev_len + common,
path,
Some(segments_to_split[0].clone()),
false,
)
}
common if common == right.len() && left.len() > right.len() => {
// e.g: target is std::fmt and we can have
// 1- use std;
// 2- use std::{ ... };
// fallback action
let mut better_action = ImportAction::add_new_use(
current_use_tree
.syntax()
.ancestors()
.find_map(ast::UseItem::cast)
.map(|it| it.syntax().clone()),
true,
);
if let Some(list) = tree_list {
// Case 2, check recursively if the path is already imported in the nested list
for u in list.use_trees() {
let child_action = walk_use_tree_for_best_action(
current_path_segments,
Some(list.clone()),
u,
target,
);
if child_action.is_better(&better_action) {
better_action = child_action;
if let ImportAction::Nothing = better_action {
return better_action;
}
}
}
} else {
// Case 1, split adding self
better_action = ImportAction::add_nested_import(prev_len + common, path, None, true)
}
better_action
}
common if common == left.len() && left.len() < right.len() => {
// e.g: target is std::fmt and we can have
// use std::fmt::Debug;
let segments_to_split = current_path_segments.split_at(prev_len + common).1;
ImportAction::add_nested_import(
prev_len + common,
path,
Some(segments_to_split[0].clone()),
true,
)
}
common if common < left.len() && common < right.len() => {
// e.g: target is std::fmt::nested::Debug
// use std::fmt::Display
let segments_to_split = current_path_segments.split_at(prev_len + common).1;
ImportAction::add_nested_import(
prev_len + common,
path,
Some(segments_to_split[0].clone()),
false,
)
}
_ => unreachable!(),
};
// If we are inside a UseTreeList adding a use statement become adding to the existing
// tree list.
action = match (current_parent_use_tree_list, action.clone()) {
(Some(use_tree_list), ImportAction::AddNewUse { .. }) => {
ImportAction::add_in_tree_list(prev_len, use_tree_list, false)
}
(_, _) => action,
};
// We remove the segments added
current_path_segments.truncate(prev_len);
action
}
fn best_action_for_target(
container: SyntaxNode,
anchor: SyntaxNode,
target: &[SmolStr],
) -> ImportAction {
let mut storage = Vec::with_capacity(16); // this should be the only allocation
let best_action = container
.children()
.filter_map(ast::UseItem::cast)
.filter_map(|it| it.use_tree())
.map(|u| walk_use_tree_for_best_action(&mut storage, None, u, target))
.fold(None, |best, a| match best {
Some(best) => Some(ImportAction::better(best, a)),
None => Some(a),
});
match best_action {
Some(action) => action,
None => {
// We have no action and no UseItem was found in container so we find
// another item and we use it as anchor.
// If there are no items above, we choose the target path itself as anchor.
// todo: we should include even whitespace blocks as anchor candidates
let anchor = container
.children()
.find(|n| n.text_range().start() < anchor.text_range().start())
.or_else(|| Some(anchor));
let add_after_anchor = anchor
.clone()
.and_then(ast::Attr::cast)
.map(|attr| attr.kind() == ast::AttrKind::Inner)
.unwrap_or(false);
ImportAction::add_new_use(anchor, add_after_anchor)
}
}
}
fn make_assist(action: &ImportAction, target: &[SmolStr], edit: &mut TextEditBuilder) {
match action {
ImportAction::AddNewUse { anchor, add_after_anchor } => {
make_assist_add_new_use(anchor, *add_after_anchor, target, edit)
}
ImportAction::AddInTreeList { common_segments, tree_list, add_self } => {
// We know that the fist n segments already exists in the use statement we want
// to modify, so we want to add only the last target.len() - n segments.
let segments_to_add = target.split_at(*common_segments).1;
make_assist_add_in_tree_list(tree_list, segments_to_add, *add_self, edit)
}
ImportAction::AddNestedImport {
common_segments,
path_to_split,
first_segment_to_split,
add_self,
} => {
let segments_to_add = target.split_at(*common_segments).1;
make_assist_add_nested_import(
path_to_split,
first_segment_to_split,
segments_to_add,
*add_self,
edit,
)
}
_ => {}
}
}
fn make_assist_add_new_use(
anchor: &Option<SyntaxNode>,
after: bool,
target: &[SmolStr],
edit: &mut TextEditBuilder,
) {
if let Some(anchor) = anchor {
let indent = ra_fmt::leading_indent(anchor);
let mut buf = String::new();
if after {
buf.push_str("\n");
if let Some(spaces) = &indent {
buf.push_str(spaces);
}
}
buf.push_str("use ");
fmt_segments_raw(target, &mut buf);
buf.push_str(";");
if !after {
buf.push_str("\n\n");
if let Some(spaces) = &indent {
buf.push_str(&spaces);
}
}
let position = if after { anchor.text_range().end() } else { anchor.text_range().start() };
edit.insert(position, buf);
}
}
fn make_assist_add_in_tree_list(
tree_list: &ast::UseTreeList,
target: &[SmolStr],
add_self: bool,
edit: &mut TextEditBuilder,
) {
let last = tree_list.use_trees().last();
if let Some(last) = last {
let mut buf = String::new();
let comma = last.syntax().siblings(Direction::Next).find(|n| n.kind() == T![,]);
let offset = if let Some(comma) = comma {
comma.text_range().end()
} else {
buf.push_str(",");
last.syntax().text_range().end()
};
if add_self {
buf.push_str(" self")
} else {
buf.push_str(" ");
}
fmt_segments_raw(target, &mut buf);
edit.insert(offset, buf);
} else {
}
}
fn make_assist_add_nested_import(
path: &ast::Path,
first_segment_to_split: &Option<ast::PathSegment>,
target: &[SmolStr],
add_self: bool,
edit: &mut TextEditBuilder,
) {
let use_tree = path.syntax().ancestors().find_map(ast::UseTree::cast);
if let Some(use_tree) = use_tree {
let (start, add_colon_colon) = if let Some(first_segment_to_split) = first_segment_to_split
{
(first_segment_to_split.syntax().text_range().start(), false)
} else {
(use_tree.syntax().text_range().end(), true)
};
let end = use_tree.syntax().text_range().end();
let mut buf = String::new();
if add_colon_colon {
buf.push_str("::");
}
buf.push_str("{");
if add_self {
buf.push_str("self, ");
}
fmt_segments_raw(target, &mut buf);
if !target.is_empty() {
buf.push_str(", ");
}
edit.insert(start, buf);
edit.insert(end, "}".to_string());
}
}