Rollup merge of #107522 - Sp00ph:introselect, r=Amanieu

Add Median of Medians fallback to introselect

Fixes #102451.

This PR is a follow up to #106997. It adds a Fast Deterministic Selection implementation as a fallback to the introselect algorithm used by `select_nth_unstable`. This allows it to guarantee O(n) worst case running time, while maintaining good performance in all cases.

This would fix #102451, which was opened because the `select_nth_unstable` docs falsely claimed that it had O(n) worst case performance, even though it was actually quadratic in the worst case. #106997 improved the worst case complexity to O(n log n) by using heapsort as a fallback, and this PR further improves it to O(n) (this would also make #106933 unnecessary).
It also improves the actual runtime if the fallback gets called: Using a pathological input of size `1 << 19` (see the playground link in #102451), calculating the median is roughly 3x faster using fast deterministic selection as a fallback than it is using heapsort.

The downside to this is less code reuse between the sorting and selection algorithms, but I don't think it's that bad. The additional algorithms are ~250 LOC with no `unsafe` blocks (I tried using unsafe to avoid bounds checks but it didn't noticeably improve the performance).
I also let it fuzz for a while against the current `select_nth_unstable` implementation to ensure correctness, and it seems to still fulfill all the necessary postconditions.

cc `@scottmcm` who reviewed #106997
This commit is contained in:
Michael Goulet 2023-05-25 13:57:59 -07:00 committed by GitHub
commit fb45513126
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 311 additions and 140 deletions

View File

@ -42,6 +42,7 @@ mod index;
mod iter;
mod raw;
mod rotate;
mod select;
mod specialize;
#[unstable(feature = "str_internals", issue = "none")]
@ -3034,7 +3035,7 @@ impl<T> [T] {
where
T: Ord,
{
sort::partition_at_index(self, index, T::lt)
select::partition_at_index(self, index, T::lt)
}
/// Reorder the slice with a comparator function such that the element at `index` is at its
@ -3089,7 +3090,7 @@ impl<T> [T] {
where
F: FnMut(&T, &T) -> Ordering,
{
sort::partition_at_index(self, index, |a: &T, b: &T| compare(a, b) == Less)
select::partition_at_index(self, index, |a: &T, b: &T| compare(a, b) == Less)
}
/// Reorder the slice with a key extraction function such that the element at `index` is at its
@ -3145,7 +3146,7 @@ impl<T> [T] {
F: FnMut(&T) -> K,
K: Ord,
{
sort::partition_at_index(self, index, |a: &T, b: &T| f(a).lt(&f(b)))
select::partition_at_index(self, index, |a: &T, b: &T| f(a).lt(&f(b)))
}
/// Moves all consecutive repeated elements to the end of the slice according to the

View File

@ -0,0 +1,302 @@
//! Slice selection
//!
//! This module contains the implementation for `slice::select_nth_unstable`.
//! It uses an introselect algorithm based on Orson Peters' pattern-defeating quicksort,
//! published at: <https://github.com/orlp/pdqsort>
//!
//! The fallback algorithm used for introselect is Median of Medians using Tukey's Ninther
//! for pivot selection. Using this as a fallback ensures O(n) worst case running time with
//! better performance than one would get using heapsort as fallback.
use crate::cmp;
use crate::mem::{self, SizedTypeProperties};
use crate::slice::sort::{
break_patterns, choose_pivot, insertion_sort_shift_left, partition, partition_equal,
};
// For slices of up to this length it's probably faster to simply sort them.
// Defined at the module scope because it's used in multiple functions.
const MAX_INSERTION: usize = 10;
fn partition_at_index_loop<'a, T, F>(
mut v: &'a mut [T],
mut index: usize,
is_less: &mut F,
mut pred: Option<&'a T>,
) where
F: FnMut(&T, &T) -> bool,
{
// Limit the amount of iterations and fall back to fast deterministic selection
// to ensure O(n) worst case running time. This limit needs to be constant, because
// using `ilog2(len)` like in `sort` would result in O(n log n) time complexity.
// The exact value of the limit is chosen somewhat arbitrarily, but for most inputs bad pivot
// selections should be relatively rare, so the limit usually shouldn't be reached
// anyways.
let mut limit = 16;
// True if the last partitioning was reasonably balanced.
let mut was_balanced = true;
loop {
if v.len() <= MAX_INSERTION {
if v.len() > 1 {
insertion_sort_shift_left(v, 1, is_less);
}
return;
}
if limit == 0 {
median_of_medians(v, is_less, index);
return;
}
// If the last partitioning was imbalanced, try breaking patterns in the slice by shuffling
// some elements around. Hopefully we'll choose a better pivot this time.
if !was_balanced {
break_patterns(v);
limit -= 1;
}
// Choose a pivot
let (pivot, _) = choose_pivot(v, is_less);
// If the chosen pivot is equal to the predecessor, then it's the smallest element in the
// slice. Partition the slice into elements equal to and elements greater than the pivot.
// This case is usually hit when the slice contains many duplicate elements.
if let Some(p) = pred {
if !is_less(p, &v[pivot]) {
let mid = partition_equal(v, pivot, is_less);
// If we've passed our index, then we're good.
if mid > index {
return;
}
// Otherwise, continue sorting elements greater than the pivot.
v = &mut v[mid..];
index = index - mid;
pred = None;
continue;
}
}
let (mid, _) = partition(v, pivot, is_less);
was_balanced = cmp::min(mid, v.len() - mid) >= v.len() / 8;
// Split the slice into `left`, `pivot`, and `right`.
let (left, right) = v.split_at_mut(mid);
let (pivot, right) = right.split_at_mut(1);
let pivot = &pivot[0];
if mid < index {
v = right;
index = index - mid - 1;
pred = Some(pivot);
} else if mid > index {
v = left;
} else {
// If mid == index, then we're done, since partition() guaranteed that all elements
// after mid are greater than or equal to mid.
return;
}
}
}
/// Helper function that returns the index of the minimum element in the slice using the given
/// comparator function
fn min_index<T, F: FnMut(&T, &T) -> bool>(slice: &[T], is_less: &mut F) -> Option<usize> {
slice
.iter()
.enumerate()
.reduce(|acc, t| if is_less(t.1, acc.1) { t } else { acc })
.map(|(i, _)| i)
}
/// Helper function that returns the index of the maximum element in the slice using the given
/// comparator function
fn max_index<T, F: FnMut(&T, &T) -> bool>(slice: &[T], is_less: &mut F) -> Option<usize> {
slice
.iter()
.enumerate()
.reduce(|acc, t| if is_less(acc.1, t.1) { t } else { acc })
.map(|(i, _)| i)
}
/// Reorder the slice such that the element at `index` is at its final sorted position.
pub fn partition_at_index<T, F>(
v: &mut [T],
index: usize,
mut is_less: F,
) -> (&mut [T], &mut T, &mut [T])
where
F: FnMut(&T, &T) -> bool,
{
if index >= v.len() {
panic!("partition_at_index index {} greater than length of slice {}", index, v.len());
}
if T::IS_ZST {
// Sorting has no meaningful behavior on zero-sized types. Do nothing.
} else if index == v.len() - 1 {
// Find max element and place it in the last position of the array. We're free to use
// `unwrap()` here because we know v must not be empty.
let max_idx = max_index(v, &mut is_less).unwrap();
v.swap(max_idx, index);
} else if index == 0 {
// Find min element and place it in the first position of the array. We're free to use
// `unwrap()` here because we know v must not be empty.
let min_idx = min_index(v, &mut is_less).unwrap();
v.swap(min_idx, index);
} else {
partition_at_index_loop(v, index, &mut is_less, None);
}
let (left, right) = v.split_at_mut(index);
let (pivot, right) = right.split_at_mut(1);
let pivot = &mut pivot[0];
(left, pivot, right)
}
/// Selection algorithm to select the k-th element from the slice in guaranteed O(n) time.
/// This is essentially a quickselect that uses Tukey's Ninther for pivot selection
fn median_of_medians<T, F: FnMut(&T, &T) -> bool>(mut v: &mut [T], is_less: &mut F, mut k: usize) {
// Since this function isn't public, it should never be called with an out-of-bounds index.
debug_assert!(k < v.len());
// If T is as ZST, `partition_at_index` will already return early.
debug_assert!(!T::IS_ZST);
// We now know that `k < v.len() <= isize::MAX`
loop {
if v.len() <= MAX_INSERTION {
if v.len() > 1 {
insertion_sort_shift_left(v, 1, is_less);
}
return;
}
// `median_of_{minima,maxima}` can't handle the extreme cases of the first/last element,
// so we catch them here and just do a linear search.
if k == v.len() - 1 {
// Find max element and place it in the last position of the array. We're free to use
// `unwrap()` here because we know v must not be empty.
let max_idx = max_index(v, is_less).unwrap();
v.swap(max_idx, k);
return;
} else if k == 0 {
// Find min element and place it in the first position of the array. We're free to use
// `unwrap()` here because we know v must not be empty.
let min_idx = min_index(v, is_less).unwrap();
v.swap(min_idx, k);
return;
}
let p = median_of_ninthers(v, is_less);
if p == k {
return;
} else if p > k {
v = &mut v[..p];
} else {
// Since `p < k < v.len()`, `p + 1` doesn't overflow and is
// a valid index into the slice.
v = &mut v[p + 1..];
k -= p + 1;
}
}
}
// Optimized for when `k` lies somewhere in the middle of the slice. Selects a pivot
// as close as possible to the median of the slice. For more details on how the algorithm
// operates, refer to the paper <https://drops.dagstuhl.de/opus/volltexte/2017/7612/pdf/LIPIcs-SEA-2017-24.pdf>.
fn median_of_ninthers<T, F: FnMut(&T, &T) -> bool>(v: &mut [T], is_less: &mut F) -> usize {
// use `saturating_mul` so the multiplication doesn't overflow on 16-bit platforms.
let frac = if v.len() <= 1024 {
v.len() / 12
} else if v.len() <= 128_usize.saturating_mul(1024) {
v.len() / 64
} else {
v.len() / 1024
};
let pivot = frac / 2;
let lo = v.len() / 2 - pivot;
let hi = frac + lo;
let gap = (v.len() - 9 * frac) / 4;
let mut a = lo - 4 * frac - gap;
let mut b = hi + gap;
for i in lo..hi {
ninther(v, is_less, a, i - frac, b, a + 1, i, b + 1, a + 2, i + frac, b + 2);
a += 3;
b += 3;
}
median_of_medians(&mut v[lo..lo + frac], is_less, pivot);
partition(v, lo + pivot, is_less).0
}
/// Moves around the 9 elements at the indices a..i, such that
/// `v[d]` contains the median of the 9 elements and the other
/// elements are partitioned around it.
fn ninther<T, F: FnMut(&T, &T) -> bool>(
v: &mut [T],
is_less: &mut F,
a: usize,
mut b: usize,
c: usize,
mut d: usize,
e: usize,
mut f: usize,
g: usize,
mut h: usize,
i: usize,
) {
b = median_idx(v, is_less, a, b, c);
h = median_idx(v, is_less, g, h, i);
if is_less(&v[h], &v[b]) {
mem::swap(&mut b, &mut h);
}
if is_less(&v[f], &v[d]) {
mem::swap(&mut d, &mut f);
}
if is_less(&v[e], &v[d]) {
// do nothing
} else if is_less(&v[f], &v[e]) {
d = f;
} else {
if is_less(&v[e], &v[b]) {
v.swap(e, b);
} else if is_less(&v[h], &v[e]) {
v.swap(e, h);
}
return;
}
if is_less(&v[d], &v[b]) {
d = b;
} else if is_less(&v[h], &v[d]) {
d = h;
}
v.swap(d, e);
}
/// returns the index pointing to the median of the 3
/// elements `v[a]`, `v[b]` and `v[c]`
fn median_idx<T, F: FnMut(&T, &T) -> bool>(
v: &[T],
is_less: &mut F,
mut a: usize,
b: usize,
mut c: usize,
) -> usize {
if is_less(&v[c], &v[a]) {
mem::swap(&mut a, &mut c);
}
if is_less(&v[c], &v[b]) {
return c;
}
if is_less(&v[b], &v[a]) {
return a;
}
b
}

View File

@ -145,7 +145,7 @@ where
/// Never inline this function to avoid code bloat. It still optimizes nicely and has practically no
/// performance impact. Even improving performance in some cases.
#[inline(never)]
fn insertion_sort_shift_left<T, F>(v: &mut [T], offset: usize, is_less: &mut F)
pub(super) fn insertion_sort_shift_left<T, F>(v: &mut [T], offset: usize, is_less: &mut F)
where
F: FnMut(&T, &T) -> bool,
{
@ -557,7 +557,7 @@ where
///
/// 1. Number of elements smaller than `v[pivot]`.
/// 2. True if `v` was already partitioned.
fn partition<T, F>(v: &mut [T], pivot: usize, is_less: &mut F) -> (usize, bool)
pub(super) fn partition<T, F>(v: &mut [T], pivot: usize, is_less: &mut F) -> (usize, bool)
where
F: FnMut(&T, &T) -> bool,
{
@ -612,7 +612,7 @@ where
///
/// Returns the number of elements equal to the pivot. It is assumed that `v` does not contain
/// elements smaller than the pivot.
fn partition_equal<T, F>(v: &mut [T], pivot: usize, is_less: &mut F) -> usize
pub(super) fn partition_equal<T, F>(v: &mut [T], pivot: usize, is_less: &mut F) -> usize
where
F: FnMut(&T, &T) -> bool,
{
@ -670,7 +670,7 @@ where
/// Scatters some elements around in an attempt to break patterns that might cause imbalanced
/// partitions in quicksort.
#[cold]
fn break_patterns<T>(v: &mut [T]) {
pub(super) fn break_patterns<T>(v: &mut [T]) {
let len = v.len();
if len >= 8 {
let mut seed = len;
@ -719,7 +719,7 @@ fn break_patterns<T>(v: &mut [T]) {
/// Chooses a pivot in `v` and returns the index and `true` if the slice is likely already sorted.
///
/// Elements in `v` might be reordered in the process.
fn choose_pivot<T, F>(v: &mut [T], is_less: &mut F) -> (usize, bool)
pub(super) fn choose_pivot<T, F>(v: &mut [T], is_less: &mut F) -> (usize, bool)
where
F: FnMut(&T, &T) -> bool,
{
@ -897,138 +897,6 @@ where
recurse(v, &mut is_less, None, limit);
}
fn partition_at_index_loop<'a, T, F>(
mut v: &'a mut [T],
mut index: usize,
is_less: &mut F,
mut pred: Option<&'a T>,
) where
F: FnMut(&T, &T) -> bool,
{
// Limit the amount of iterations and fall back to heapsort, similarly to `slice::sort_unstable`.
// This lowers the worst case running time from O(n^2) to O(n log n).
// FIXME: Investigate whether it would be better to use something like Median of Medians
// or Fast Deterministic Selection to guarantee O(n) worst case.
let mut limit = usize::BITS - v.len().leading_zeros();
// True if the last partitioning was reasonably balanced.
let mut was_balanced = true;
loop {
let len = v.len();
// For slices of up to this length it's probably faster to simply sort them.
const MAX_INSERTION: usize = 10;
if len <= MAX_INSERTION {
if len >= 2 {
insertion_sort_shift_left(v, 1, is_less);
}
return;
}
if limit == 0 {
heapsort(v, is_less);
return;
}
// If the last partitioning was imbalanced, try breaking patterns in the slice by shuffling
// some elements around. Hopefully we'll choose a better pivot this time.
if !was_balanced {
break_patterns(v);
limit -= 1;
}
// Choose a pivot
let (pivot, _) = choose_pivot(v, is_less);
// If the chosen pivot is equal to the predecessor, then it's the smallest element in the
// slice. Partition the slice into elements equal to and elements greater than the pivot.
// This case is usually hit when the slice contains many duplicate elements.
if let Some(p) = pred {
if !is_less(p, &v[pivot]) {
let mid = partition_equal(v, pivot, is_less);
// If we've passed our index, then we're good.
if mid > index {
return;
}
// Otherwise, continue sorting elements greater than the pivot.
v = &mut v[mid..];
index = index - mid;
pred = None;
continue;
}
}
let (mid, _) = partition(v, pivot, is_less);
was_balanced = cmp::min(mid, len - mid) >= len / 8;
// Split the slice into `left`, `pivot`, and `right`.
let (left, right) = v.split_at_mut(mid);
let (pivot, right) = right.split_at_mut(1);
let pivot = &pivot[0];
if mid < index {
v = right;
index = index - mid - 1;
pred = Some(pivot);
} else if mid > index {
v = left;
} else {
// If mid == index, then we're done, since partition() guaranteed that all elements
// after mid are greater than or equal to mid.
return;
}
}
}
/// Reorder the slice such that the element at `index` is at its final sorted position.
pub fn partition_at_index<T, F>(
v: &mut [T],
index: usize,
mut is_less: F,
) -> (&mut [T], &mut T, &mut [T])
where
F: FnMut(&T, &T) -> bool,
{
use cmp::Ordering::Greater;
use cmp::Ordering::Less;
if index >= v.len() {
panic!("partition_at_index index {} greater than length of slice {}", index, v.len());
}
if T::IS_ZST {
// Sorting has no meaningful behavior on zero-sized types. Do nothing.
} else if index == v.len() - 1 {
// Find max element and place it in the last position of the array. We're free to use
// `unwrap()` here because we know v must not be empty.
let (max_index, _) = v
.iter()
.enumerate()
.max_by(|&(_, x), &(_, y)| if is_less(x, y) { Less } else { Greater })
.unwrap();
v.swap(max_index, index);
} else if index == 0 {
// Find min element and place it in the first position of the array. We're free to use
// `unwrap()` here because we know v must not be empty.
let (min_index, _) = v
.iter()
.enumerate()
.min_by(|&(_, x), &(_, y)| if is_less(x, y) { Less } else { Greater })
.unwrap();
v.swap(min_index, index);
} else {
partition_at_index_loop(v, index, &mut is_less, None);
}
let (left, right) = v.split_at_mut(index);
let (pivot, right) = right.split_at_mut(1);
let pivot = &mut pivot[0];
(left, pivot, right)
}
/// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and
/// stores the result into `v[..]`.
///