Change file structure, add comments for inhabitedness.rs

This commit is contained in:
Andrew Cann 2016-12-31 08:51:25 +08:00
parent e9ffc409bc
commit f947890226
3 changed files with 222 additions and 123 deletions

View File

@ -0,0 +1,133 @@
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::mem;
use rustc_data_structures::small_vec::SmallVec;
use syntax::ast::CRATE_NODE_ID;
use ty::context::TyCtxt;
use ty::{DefId, DefIdTree};
/// Represents a forest of DefIds closed under the ancestor relation. That is,
/// if a DefId representing a module is contained in the forest then all
/// DefIds defined in that module or submodules are also implicitly contained
/// in the forest.
///
/// This is used to represent a set of modules in which a type is visibly
/// uninhabited.
#[derive(Clone)]
pub struct DefIdForest {
/// The minimal set of DefIds required to represent the whole set.
/// If A and B are DefIds in the DefIdForest, and A is a desecendant
/// of B, then only B will be in root_ids.
/// We use a SmallVec here because (for its use for cacheing inhabitedness)
/// its rare that this will contain even two ids.
root_ids: SmallVec<[DefId; 1]>,
}
impl<'a, 'gcx, 'tcx> DefIdForest {
/// Create an empty forest.
pub fn empty() -> DefIdForest {
DefIdForest {
root_ids: SmallVec::new(),
}
}
/// Create a forest consisting of a single tree representing the entire
/// crate.
#[inline]
pub fn full(tcx: TyCtxt<'a, 'gcx, 'tcx>) -> DefIdForest {
let crate_id = tcx.map.local_def_id(CRATE_NODE_ID);
DefIdForest::from_id(crate_id)
}
/// Create a forest containing a DefId and all its descendants.
pub fn from_id(id: DefId) -> DefIdForest {
let mut root_ids = SmallVec::new();
root_ids.push(id);
DefIdForest {
root_ids: root_ids,
}
}
/// Test whether the forest is empty.
pub fn is_empty(&self) -> bool {
self.root_ids.is_empty()
}
/// Test whether the forest conains a given DefId.
pub fn contains(&self,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
id: DefId) -> bool
{
for root_id in self.root_ids.iter() {
if tcx.is_descendant_of(id, *root_id) {
return true;
}
}
false
}
/// Calculate the intersection of a collection of forests.
pub fn intersection<I>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
iter: I) -> DefIdForest
where I: IntoIterator<Item=DefIdForest>
{
let mut ret = DefIdForest::full(tcx);
let mut next_ret = SmallVec::new();
let mut old_ret: SmallVec<[DefId; 1]> = SmallVec::new();
for next_forest in iter {
for id in ret.root_ids.drain(..) {
if next_forest.contains(tcx, id) {
next_ret.push(id);
} else {
old_ret.push(id);
}
}
ret.root_ids.extend(old_ret.drain(..));
for id in next_forest.root_ids {
if ret.contains(tcx, id) {
next_ret.push(id);
}
}
mem::swap(&mut next_ret, &mut ret.root_ids);
next_ret.drain(..);
}
ret
}
/// Calculate the union of a collection of forests.
pub fn union<I>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
iter: I) -> DefIdForest
where I: IntoIterator<Item=DefIdForest>
{
let mut ret = DefIdForest::empty();
let mut next_ret = SmallVec::new();
for next_forest in iter {
for id in ret.root_ids.drain(..) {
if !next_forest.contains(tcx, id) {
next_ret.push(id);
}
}
for id in next_forest.root_ids {
if !next_ret.contains(&id) {
next_ret.push(id);
}
}
mem::swap(&mut next_ret, &mut ret.root_ids);
next_ret.drain(..);
}
ret
}
}

View File

@ -8,127 +8,59 @@
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use std::mem;
use rustc_data_structures::small_vec::SmallVec;
use syntax::ast::CRATE_NODE_ID;
use util::nodemap::FxHashSet;
use ty::context::TyCtxt;
use ty::{AdtDef, VariantDef, FieldDef, TyS};
use ty::{DefId, Substs};
use ty::{AdtKind, Visibility, DefIdTree};
use ty::{AdtKind, Visibility};
use ty::TypeVariants::*;
/// Represents a set of DefIds closed under the ancestor relation. That is, if
/// a DefId is in this set then so are all its descendants.
#[derive(Clone)]
pub struct DefIdForest {
/// The minimal set of DefIds required to represent the whole set.
/// If A and B are DefIds in the DefIdForest, and A is a desecendant
/// of B, then only B will be in root_ids.
/// We use a SmallVec here because (for its use in this module) its rare
/// that this will contain even two ids.
root_ids: SmallVec<[DefId; 1]>,
}
pub use self::def_id_forest::DefIdForest;
impl<'a, 'gcx, 'tcx> DefIdForest {
/// Create an empty forest.
pub fn empty() -> DefIdForest {
DefIdForest {
root_ids: SmallVec::new(),
}
}
mod def_id_forest;
/// Create a forest consisting of a single tree representing the entire
/// crate.
#[inline]
pub fn full(tcx: TyCtxt<'a, 'gcx, 'tcx>) -> DefIdForest {
let crate_id = tcx.map.local_def_id(CRATE_NODE_ID);
DefIdForest::from_id(crate_id)
}
/// Create a forest containing a DefId and all its descendants.
pub fn from_id(id: DefId) -> DefIdForest {
let mut root_ids = SmallVec::new();
root_ids.push(id);
DefIdForest {
root_ids: root_ids,
}
}
/// Test whether the forest is empty.
pub fn is_empty(&self) -> bool {
self.root_ids.is_empty()
}
/// Test whether the forest conains a given DefId.
pub fn contains(&self,
tcx: TyCtxt<'a, 'gcx, 'tcx>,
id: DefId) -> bool
{
for root_id in self.root_ids.iter() {
if tcx.is_descendant_of(id, *root_id) {
return true;
}
}
false
}
/// Calculate the intersection of a collection of forests.
pub fn intersection<I>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
iter: I) -> DefIdForest
where I: IntoIterator<Item=DefIdForest>
{
let mut ret = DefIdForest::full(tcx);
let mut next_ret = SmallVec::new();
let mut old_ret: SmallVec<[DefId; 1]> = SmallVec::new();
for next_forest in iter {
for id in ret.root_ids.drain(..) {
if next_forest.contains(tcx, id) {
next_ret.push(id);
} else {
old_ret.push(id);
}
}
ret.root_ids.extend(old_ret.drain(..));
for id in next_forest.root_ids {
if ret.contains(tcx, id) {
next_ret.push(id);
}
}
mem::swap(&mut next_ret, &mut ret.root_ids);
next_ret.drain(..);
}
ret
}
/// Calculate the union of a collection of forests.
pub fn union<I>(tcx: TyCtxt<'a, 'gcx, 'tcx>,
iter: I) -> DefIdForest
where I: IntoIterator<Item=DefIdForest>
{
let mut ret = DefIdForest::empty();
let mut next_ret = SmallVec::new();
for next_forest in iter {
for id in ret.root_ids.drain(..) {
if !next_forest.contains(tcx, id) {
next_ret.push(id);
}
}
for id in next_forest.root_ids {
if !next_ret.contains(&id) {
next_ret.push(id);
}
}
mem::swap(&mut next_ret, &mut ret.root_ids);
next_ret.drain(..);
}
ret
}
}
// The methods in this module calculate DefIdForests of modules in which a
// AdtDef/VariantDef/FieldDef is visibly uninhabited.
//
// # Example
// ```rust
// enum Void {}
// mod a {
// pub mod b {
// pub struct SecretlyUninhabited {
// _priv: !,
// }
// }
// }
//
// mod c {
// pub struct AlsoSecretlyUninhabited {
// _priv: Void,
// }
// mod d {
// }
// }
//
// struct Foo {
// x: a::b::SecretlyUninhabited,
// y: c::AlsoSecretlyUninhabited,
// }
// ```
// In this code, the type Foo will only be visibly uninhabited inside the
// modules b, c and d. Calling uninhabited_from on Foo or its AdtDef will
// return the forest of modules {b, c->d} (represented in a DefIdForest by the
// set {b, c})
//
// We need this information for pattern-matching on Foo or types that contain
// Foo.
//
// # Example
// ```rust
// let foo_result: Result<T, Foo> = ... ;
// let Ok(t) = foo_result;
// ```
// This code should only compile in modules where the uninhabitedness of Foo is
// visible.
impl<'a, 'gcx, 'tcx> AdtDef {
/// Calculate the forest of DefIds from which this adt is visibly uninhabited.
@ -189,6 +121,9 @@ impl<'a, 'gcx, 'tcx> FieldDef {
is_enum: bool) -> DefIdForest
{
let mut data_uninhabitedness = move || self.ty(tcx, substs).uninhabited_from(visited, tcx);
// FIXME(canndrew): Currently enum fields are (incorrectly) stored with
// Visibility::Invisible so we need to override self.vis if we're
// dealing with an enum.
if is_enum {
data_uninhabitedness()
} else {

View File

@ -980,20 +980,51 @@ impl<'a, 'gcx, 'tcx> TyS<'tcx> {
}
/// Checks whether a type is visibly uninhabited from a particular module.
/// # Example
/// ```rust
/// enum Void {}
/// mod a {
/// pub mod b {
/// pub struct SecretlyUninhabited {
/// _priv: !,
/// }
/// }
/// }
///
/// mod c {
/// pub struct AlsoSecretlyUninhabited {
/// _priv: Void,
/// }
/// mod d {
/// }
/// }
///
/// struct Foo {
/// x: a::b::SecretlyUninhabited,
/// y: c::AlsoSecretlyUninhabited,
/// }
/// ```
/// In this code, the type `Foo` will only be visibly uninhabited inside the
/// modules b, c and d. This effects pattern-matching on `Foo` or types that
/// contain `Foo`.
///
/// # Example
/// ```rust
/// let foo_result: Result<T, Foo> = ... ;
/// let Ok(t) = foo_result;
/// ```
/// This code should only compile in modules where the uninhabitedness of Foo is
/// visible.
pub fn is_uninhabited_from(&self, module: DefId, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
let mut visited = FxHashSet::default();
let forest = self.uninhabited_from(&mut visited, tcx);
forest.contains(tcx, module)
}
/// Checks whether a type is uninhabited.
/// Note: just because a type is uninhabited, that doesn't mean that it's
/// *visibly* uninhabited outside its module. You sometimes may want
/// `is_uninhabited_from` instead.
pub fn is_uninhabited_anywhere(&self, tcx: TyCtxt<'a, 'gcx, 'tcx>) -> bool {
let mut visited = FxHashSet::default();
let node_set = self.uninhabited_from(&mut visited, tcx);
!node_set.is_empty()
// To check whether this type is uninhabited at all (not just from the
// given node) you could check whether the forest is empty.
// ```
// forest.is_empty()
// ```
forest.contains(tcx, module)
}
pub fn is_primitive(&self) -> bool {