Auto merge of #118003 - matthiaskrgr:rollup-80t3uky, r=matthiaskrgr

Rollup of 3 pull requests

Successful merges:

 - #115476 (document ABI compatibility)
 - #117688 (Misc changes to StableMIR required to Kani use case.)
 - #117998 (On resolve error of `[rest..]`, suggest `[rest @ ..]`)

r? `@ghost`
`@rustbot` modify labels: rollup
This commit is contained in:
bors 2023-11-17 07:53:40 +00:00
commit ee5ef3aac9
21 changed files with 784 additions and 80 deletions

View File

@ -603,6 +603,8 @@ struct DiagnosticMetadata<'ast> {
/// Only used for better errors on `let <pat>: <expr, not type>;`.
current_let_binding: Option<(Span, Option<Span>, Option<Span>)>,
current_pat: Option<&'ast Pat>,
/// Used to detect possible `if let` written without `let` and to provide structured suggestion.
in_if_condition: Option<&'ast Expr>,
@ -703,6 +705,12 @@ impl<'a: 'ast, 'ast, 'tcx> Visitor<'ast> for LateResolutionVisitor<'a, '_, 'ast,
fn visit_expr(&mut self, expr: &'ast Expr) {
self.resolve_expr(expr, None);
}
fn visit_pat(&mut self, p: &'ast Pat) {
let prev = self.diagnostic_metadata.current_pat;
self.diagnostic_metadata.current_pat = Some(p);
visit::walk_pat(self, p);
self.diagnostic_metadata.current_pat = prev;
}
fn visit_local(&mut self, local: &'ast Local) {
let local_spans = match local.pat.kind {
// We check for this to avoid tuple struct fields.

View File

@ -431,6 +431,7 @@ impl<'a: 'ast, 'ast, 'tcx> LateResolutionVisitor<'a, '_, 'ast, 'tcx> {
code,
);
self.suggest_at_operator_in_slice_pat_with_range(&mut err, path);
self.suggest_swapping_misplaced_self_ty_and_trait(&mut err, source, res, base_error.span);
if let Some((span, label)) = base_error.span_label {
@ -1063,6 +1064,32 @@ impl<'a: 'ast, 'ast, 'tcx> LateResolutionVisitor<'a, '_, 'ast, 'tcx> {
true
}
fn suggest_at_operator_in_slice_pat_with_range(
&mut self,
err: &mut Diagnostic,
path: &[Segment],
) {
if let Some(pat) = self.diagnostic_metadata.current_pat
&& let ast::PatKind::Range(Some(start), None, range) = &pat.kind
&& let ExprKind::Path(None, range_path) = &start.kind
&& let [segment] = &range_path.segments[..]
&& let [s] = path
&& segment.ident == s.ident
{
// We've encountered `[first, rest..]` where the user might have meant
// `[first, rest @ ..]` (#88404).
err.span_suggestion_verbose(
segment.ident.span.between(range.span),
format!(
"if you meant to collect the rest of the slice in `{}`, use the at operator",
segment.ident,
),
" @ ",
Applicability::MaybeIncorrect,
);
}
}
fn suggest_swapping_misplaced_self_ty_and_trait(
&mut self,
err: &mut Diagnostic,

View File

@ -6,11 +6,23 @@
// Prefer importing stable_mir over internal rustc constructs to make this file more readable.
use crate::rustc_smir::Tables;
use rustc_middle::ty::{self as rustc_ty, Ty as InternalTy};
use stable_mir::ty::{Const, GenericArgKind, GenericArgs, Region, Ty};
use stable_mir::DefId;
use rustc_span::Symbol;
use stable_mir::mir::mono::{Instance, MonoItem, StaticDef};
use stable_mir::ty::{
Binder, BoundRegionKind, BoundTyKind, BoundVariableKind, ClosureKind, Const, GenericArgKind,
GenericArgs, Region, TraitRef, Ty,
};
use stable_mir::{AllocId, CrateItem, DefId};
use super::RustcInternal;
impl<'tcx> RustcInternal<'tcx> for CrateItem {
type T = rustc_span::def_id::DefId;
fn internal(&self, tables: &mut Tables<'tcx>) -> Self::T {
self.0.internal(tables)
}
}
impl<'tcx> RustcInternal<'tcx> for DefId {
type T = rustc_span::def_id::DefId;
fn internal(&self, tables: &mut Tables<'tcx>) -> Self::T {
@ -38,8 +50,9 @@ impl<'tcx> RustcInternal<'tcx> for GenericArgKind {
impl<'tcx> RustcInternal<'tcx> for Region {
type T = rustc_ty::Region<'tcx>;
fn internal(&self, _tables: &mut Tables<'tcx>) -> Self::T {
todo!()
fn internal(&self, tables: &mut Tables<'tcx>) -> Self::T {
// Cannot recover region. Use erased instead.
tables.tcx.lifetimes.re_erased
}
}
@ -65,3 +78,118 @@ impl<'tcx> RustcInternal<'tcx> for Const {
tables.constants[self.id]
}
}
impl<'tcx> RustcInternal<'tcx> for MonoItem {
type T = rustc_middle::mir::mono::MonoItem<'tcx>;
fn internal(&self, tables: &mut Tables<'tcx>) -> Self::T {
use rustc_middle::mir::mono as rustc_mono;
match self {
MonoItem::Fn(instance) => rustc_mono::MonoItem::Fn(instance.internal(tables)),
MonoItem::Static(def) => rustc_mono::MonoItem::Static(def.internal(tables)),
MonoItem::GlobalAsm(_) => {
unimplemented!()
}
}
}
}
impl<'tcx> RustcInternal<'tcx> for Instance {
type T = rustc_ty::Instance<'tcx>;
fn internal(&self, tables: &mut Tables<'tcx>) -> Self::T {
tables.instances[self.def]
}
}
impl<'tcx> RustcInternal<'tcx> for StaticDef {
type T = rustc_span::def_id::DefId;
fn internal(&self, tables: &mut Tables<'tcx>) -> Self::T {
self.0.internal(tables)
}
}
#[allow(rustc::usage_of_qualified_ty)]
impl<'tcx, T> RustcInternal<'tcx> for Binder<T>
where
T: RustcInternal<'tcx>,
T::T: rustc_ty::TypeVisitable<rustc_ty::TyCtxt<'tcx>>,
{
type T = rustc_ty::Binder<'tcx, T::T>;
fn internal(&self, tables: &mut Tables<'tcx>) -> Self::T {
rustc_ty::Binder::bind_with_vars(
self.value.internal(tables),
tables.tcx.mk_bound_variable_kinds_from_iter(
self.bound_vars.iter().map(|bound| bound.internal(tables)),
),
)
}
}
impl<'tcx> RustcInternal<'tcx> for BoundVariableKind {
type T = rustc_ty::BoundVariableKind;
fn internal(&self, tables: &mut Tables<'tcx>) -> Self::T {
match self {
BoundVariableKind::Ty(kind) => rustc_ty::BoundVariableKind::Ty(match kind {
BoundTyKind::Anon => rustc_ty::BoundTyKind::Anon,
BoundTyKind::Param(def, symbol) => {
rustc_ty::BoundTyKind::Param(def.0.internal(tables), Symbol::intern(&symbol))
}
}),
BoundVariableKind::Region(kind) => rustc_ty::BoundVariableKind::Region(match kind {
BoundRegionKind::BrAnon => rustc_ty::BoundRegionKind::BrAnon,
BoundRegionKind::BrNamed(def, symbol) => rustc_ty::BoundRegionKind::BrNamed(
def.0.internal(tables),
Symbol::intern(&symbol),
),
BoundRegionKind::BrEnv => rustc_ty::BoundRegionKind::BrEnv,
}),
BoundVariableKind::Const => rustc_ty::BoundVariableKind::Const,
}
}
}
impl<'tcx> RustcInternal<'tcx> for TraitRef {
type T = rustc_ty::TraitRef<'tcx>;
fn internal(&self, tables: &mut Tables<'tcx>) -> Self::T {
rustc_ty::TraitRef::new(
tables.tcx,
self.def_id.0.internal(tables),
self.args().internal(tables),
)
}
}
impl<'tcx> RustcInternal<'tcx> for AllocId {
type T = rustc_middle::mir::interpret::AllocId;
fn internal(&self, tables: &mut Tables<'tcx>) -> Self::T {
tables.alloc_ids[*self]
}
}
impl<'tcx> RustcInternal<'tcx> for ClosureKind {
type T = rustc_ty::ClosureKind;
fn internal(&self, _tables: &mut Tables<'tcx>) -> Self::T {
match self {
ClosureKind::Fn => rustc_ty::ClosureKind::Fn,
ClosureKind::FnMut => rustc_ty::ClosureKind::FnMut,
ClosureKind::FnOnce => rustc_ty::ClosureKind::FnOnce,
}
}
}
impl<'tcx, T> RustcInternal<'tcx> for &T
where
T: RustcInternal<'tcx>,
{
type T = T::T;
fn internal(&self, tables: &mut Tables<'tcx>) -> Self::T {
(*self).internal(tables)
}
}

View File

@ -13,6 +13,7 @@ use rustc_span::def_id::{CrateNum, DefId};
use rustc_span::Span;
use scoped_tls::scoped_thread_local;
use stable_mir::ty::IndexedVal;
use stable_mir::Error;
use std::cell::Cell;
use std::cell::RefCell;
use std::fmt::Debug;
@ -21,11 +22,11 @@ use std::ops::Index;
mod internal;
pub fn stable<'tcx, S: Stable<'tcx>>(item: &S) -> S::T {
pub fn stable<'tcx, S: Stable<'tcx>>(item: S) -> S::T {
with_tables(|tables| item.stable(tables))
}
pub fn internal<'tcx, S: RustcInternal<'tcx>>(item: &S) -> S::T {
pub fn internal<'tcx, S: RustcInternal<'tcx>>(item: S) -> S::T {
with_tables(|tables| item.internal(tables))
}
@ -144,12 +145,13 @@ pub fn crate_num(item: &stable_mir::Crate) -> CrateNum {
// datastructures and stable MIR datastructures
scoped_thread_local! (static TLV: Cell<*const ()>);
pub(crate) fn init<'tcx>(tables: &TablesWrapper<'tcx>, f: impl FnOnce()) {
pub(crate) fn init<'tcx, F, T>(tables: &TablesWrapper<'tcx>, f: F) -> T
where
F: FnOnce() -> T,
{
assert!(!TLV.is_set());
let ptr = tables as *const _ as *const ();
TLV.set(&Cell::new(ptr), || {
f();
});
TLV.set(&Cell::new(ptr), || f())
}
/// Loads the current context and calls a function with it.
@ -165,7 +167,10 @@ pub(crate) fn with_tables<'tcx, R>(f: impl FnOnce(&mut Tables<'tcx>) -> R) -> R
})
}
pub fn run(tcx: TyCtxt<'_>, f: impl FnOnce()) {
pub fn run<F, T>(tcx: TyCtxt<'_>, f: F) -> Result<T, Error>
where
F: FnOnce() -> T,
{
let tables = TablesWrapper(RefCell::new(Tables {
tcx,
def_ids: IndexMap::default(),
@ -175,7 +180,7 @@ pub fn run(tcx: TyCtxt<'_>, f: impl FnOnce()) {
instances: IndexMap::default(),
constants: IndexMap::default(),
}));
stable_mir::run(&tables, || init(&tables, f));
stable_mir::run(&tables, || init(&tables, f))
}
#[macro_export]
@ -241,7 +246,8 @@ macro_rules! run {
queries.global_ctxt().unwrap().enter(|tcx| {
rustc_internal::run(tcx, || {
self.result = Some((self.callback)(tcx));
});
})
.unwrap();
if self.result.as_ref().is_some_and(|val| val.is_continue()) {
Compilation::Continue
} else {

View File

@ -19,10 +19,15 @@ impl<'tcx> BodyBuilder<'tcx> {
BodyBuilder { tcx, instance }
}
/// Build a stable monomorphic body for a given instance based on the MIR body.
///
/// Note that we skip instantiation for static and constants. Trying to do so can cause ICE.
///
/// We do monomorphize non-generic functions to eval unevaluated constants.
pub fn build(mut self, tables: &mut Tables<'tcx>) -> stable_mir::mir::Body {
let mut body = self.tcx.instance_mir(self.instance.def).clone();
let generics = self.tcx.generics_of(self.instance.def_id());
if generics.requires_monomorphization(self.tcx) {
if self.tcx.def_kind(self.instance.def_id()).is_fn_like() || !self.instance.args.is_empty()
{
self.visit_body(&mut body);
}
body.stable(tables)
@ -49,6 +54,20 @@ impl<'tcx> MutVisitor<'tcx> for BodyBuilder<'tcx> {
*ty = self.monomorphize(*ty);
}
fn visit_constant(&mut self, constant: &mut mir::ConstOperand<'tcx>, location: mir::Location) {
let const_ = self.monomorphize(constant.const_);
let val = match const_.eval(self.tcx, ty::ParamEnv::reveal_all(), None) {
Ok(v) => v,
Err(mir::interpret::ErrorHandled::Reported(..)) => return,
Err(mir::interpret::ErrorHandled::TooGeneric(..)) => {
unreachable!("Failed to evaluate instance constant: {:?}", const_)
}
};
let ty = constant.ty();
constant.const_ = mir::Const::Val(val, ty);
self.super_constant(constant, location);
}
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx
}

View File

@ -8,9 +8,9 @@
//! For now, we are developing everything inside `rustc`, thus, we keep this module private.
use crate::rustc_internal::{IndexMap, RustcInternal};
use crate::rustc_smir::hir::def::DefKind;
use crate::rustc_smir::stable_mir::ty::{BoundRegion, EarlyParamRegion, Region};
use crate::rustc_smir::stable_mir::ty::{BoundRegion, Region};
use rustc_hir as hir;
use rustc_hir::def::DefKind;
use rustc_middle::mir;
use rustc_middle::mir::interpret::{alloc_range, AllocId};
use rustc_middle::mir::mono::MonoItem;
@ -20,10 +20,11 @@ use rustc_target::abi::FieldIdx;
use stable_mir::mir::mono::InstanceDef;
use stable_mir::mir::{Body, CopyNonOverlapping, Statement, UserTypeProjection, VariantIdx};
use stable_mir::ty::{
Const, ConstId, ConstantKind, FloatTy, GenericParamDef, IntTy, LineInfo, Movability, RigidTy,
Span, TyKind, UintTy,
AdtDef, AdtKind, ClosureDef, ClosureKind, Const, ConstId, ConstantKind, EarlyParamRegion,
FloatTy, FnDef, GenericArgs, GenericParamDef, IntTy, LineInfo, Movability, RigidTy, Span,
TyKind, UintTy,
};
use stable_mir::{self, opaque, Context, Filename};
use stable_mir::{self, opaque, Context, CrateItem, Filename, ItemKind};
use std::cell::RefCell;
use tracing::debug;
@ -85,9 +86,23 @@ impl<'tcx> Context for TablesWrapper<'tcx> {
LineInfo { start_line: lines.1, start_col: lines.2, end_line: lines.3, end_col: lines.4 }
}
fn def_kind(&self, def_id: stable_mir::DefId) -> stable_mir::DefKind {
fn item_kind(&self, item: CrateItem) -> ItemKind {
let tables = self.0.borrow();
new_item_kind(tables.tcx.def_kind(tables[item.0]))
}
fn adt_kind(&self, def: AdtDef) -> AdtKind {
let mut tables = self.0.borrow_mut();
tables.tcx.def_kind(tables[def_id]).stable(&mut *tables)
let ty = tables.tcx.type_of(def.0.internal(&mut *tables)).instantiate_identity().kind();
let ty::TyKind::Adt(def, _) = ty else {
panic!("Expected an ADT definition, but found: {ty:?}")
};
def.adt_kind().stable(&mut *tables)
}
fn def_ty(&self, item: stable_mir::DefId) -> stable_mir::ty::Ty {
let mut tables = self.0.borrow_mut();
tables.tcx.type_of(item.internal(&mut *tables)).instantiate_identity().stable(&mut *tables)
}
fn span_of_an_item(&self, def_id: stable_mir::DefId) -> Span {
@ -198,10 +213,12 @@ impl<'tcx> Context for TablesWrapper<'tcx> {
}
}
fn instance_body(&self, def: InstanceDef) -> Body {
fn instance_body(&self, def: InstanceDef) -> Option<Body> {
let mut tables = self.0.borrow_mut();
let instance = tables.instances[def];
builder::BodyBuilder::new(tables.tcx, instance).build(&mut *tables)
tables
.has_body(instance)
.then(|| builder::BodyBuilder::new(tables.tcx, instance).build(&mut *tables))
}
fn instance_ty(&self, def: InstanceDef) -> stable_mir::ty::Ty {
@ -249,6 +266,38 @@ impl<'tcx> Context for TablesWrapper<'tcx> {
Ok(None) | Err(_) => None,
}
}
fn resolve_drop_in_place(&self, ty: stable_mir::ty::Ty) -> stable_mir::mir::mono::Instance {
let mut tables = self.0.borrow_mut();
let internal_ty = ty.internal(&mut *tables);
let instance = Instance::resolve_drop_in_place(tables.tcx, internal_ty);
instance.stable(&mut *tables)
}
fn resolve_for_fn_ptr(
&self,
def: FnDef,
args: &GenericArgs,
) -> Option<stable_mir::mir::mono::Instance> {
let mut tables = self.0.borrow_mut();
let def_id = def.0.internal(&mut *tables);
let args_ref = args.internal(&mut *tables);
Instance::resolve_for_fn_ptr(tables.tcx, ParamEnv::reveal_all(), def_id, args_ref)
.stable(&mut *tables)
}
fn resolve_closure(
&self,
def: ClosureDef,
args: &GenericArgs,
kind: ClosureKind,
) -> Option<stable_mir::mir::mono::Instance> {
let mut tables = self.0.borrow_mut();
let def_id = def.0.internal(&mut *tables);
let args_ref = args.internal(&mut *tables);
let closure_kind = kind.internal(&mut *tables);
Instance::resolve_closure(tables.tcx, def_id, args_ref, closure_kind).stable(&mut *tables)
}
}
pub(crate) struct TablesWrapper<'tcx>(pub(crate) RefCell<Tables<'tcx>>);
@ -271,6 +320,17 @@ impl<'tcx> Tables<'tcx> {
fn intern_const(&mut self, constant: mir::Const<'tcx>) -> ConstId {
self.constants.create_or_fetch(constant)
}
fn has_body(&self, instance: Instance<'tcx>) -> bool {
let def_id = instance.def_id();
self.tcx.is_mir_available(def_id)
|| !matches!(
instance.def,
ty::InstanceDef::Virtual(..)
| ty::InstanceDef::Intrinsic(..)
| ty::InstanceDef::Item(..)
)
}
}
/// Build a stable mir crate from a given crate number.
@ -281,6 +341,40 @@ fn smir_crate(tcx: TyCtxt<'_>, crate_num: CrateNum) -> stable_mir::Crate {
stable_mir::Crate { id: crate_num.into(), name: crate_name, is_local }
}
fn new_item_kind(kind: DefKind) -> ItemKind {
match kind {
DefKind::Mod
| DefKind::Struct
| DefKind::Union
| DefKind::Enum
| DefKind::Variant
| DefKind::Trait
| DefKind::TyAlias
| DefKind::ForeignTy
| DefKind::TraitAlias
| DefKind::AssocTy
| DefKind::TyParam
| DefKind::ConstParam
| DefKind::Macro(_)
| DefKind::ExternCrate
| DefKind::Use
| DefKind::ForeignMod
| DefKind::OpaqueTy
| DefKind::Field
| DefKind::LifetimeParam
| DefKind::Impl { .. }
| DefKind::Ctor(_, _)
| DefKind::GlobalAsm => {
unreachable!("Not a valid item kind: {kind:?}");
}
DefKind::Closure | DefKind::Coroutine | DefKind::AssocFn | DefKind::Fn => ItemKind::Fn,
DefKind::Const | DefKind::InlineConst | DefKind::AssocConst | DefKind::AnonConst => {
ItemKind::Const
}
DefKind::Static(_) => ItemKind::Static,
}
}
/// Trait used to convert between an internal MIR type to a Stable MIR type.
pub trait Stable<'tcx> {
/// The stable representation of the type implementing Stable.
@ -926,6 +1020,18 @@ impl<'tcx> Stable<'tcx> for mir::AggregateKind<'tcx> {
}
}
impl<'tcx> Stable<'tcx> for ty::AdtKind {
type T = AdtKind;
fn stable(&self, _tables: &mut Tables<'tcx>) -> Self::T {
match self {
ty::AdtKind::Struct => AdtKind::Struct,
ty::AdtKind::Union => AdtKind::Union,
ty::AdtKind::Enum => AdtKind::Enum,
}
}
}
impl<'tcx> Stable<'tcx> for rustc_hir::CoroutineSource {
type T = stable_mir::mir::CoroutineSource;
fn stable(&self, _: &mut Tables<'tcx>) -> Self::T {
@ -1062,8 +1168,6 @@ impl<'tcx> Stable<'tcx> for mir::TerminatorKind<'tcx> {
impl<'tcx> Stable<'tcx> for ty::GenericArgs<'tcx> {
type T = stable_mir::ty::GenericArgs;
fn stable(&self, tables: &mut Tables<'tcx>) -> Self::T {
use stable_mir::ty::GenericArgs;
GenericArgs(self.iter().map(|arg| arg.unpack().stable(tables)).collect())
}
}
@ -1486,7 +1590,7 @@ impl<'tcx> Stable<'tcx> for ty::TraitRef<'tcx> {
fn stable(&self, tables: &mut Tables<'tcx>) -> Self::T {
use stable_mir::ty::TraitRef;
TraitRef { def_id: tables.trait_def(self.def_id), args: self.args.stable(tables) }
TraitRef::try_new(tables.trait_def(self.def_id), self.args.stable(tables)).unwrap()
}
}
@ -1762,15 +1866,6 @@ impl<'tcx> Stable<'tcx> for rustc_span::Span {
}
}
impl<'tcx> Stable<'tcx> for DefKind {
type T = stable_mir::DefKind;
fn stable(&self, _: &mut Tables<'tcx>) -> Self::T {
// FIXME: add a real implementation of stable DefKind
opaque(self)
}
}
impl<'tcx> Stable<'tcx> for ty::Instance<'tcx> {
type T = stable_mir::mir::mono::Instance;
@ -1805,3 +1900,25 @@ impl<'tcx> Stable<'tcx> for MonoItem<'tcx> {
}
}
}
impl<'tcx, T> Stable<'tcx> for &T
where
T: Stable<'tcx>,
{
type T = T::T;
fn stable(&self, tables: &mut Tables<'tcx>) -> Self::T {
(*self).stable(tables)
}
}
impl<'tcx, T> Stable<'tcx> for Option<T>
where
T: Stable<'tcx>,
{
type T = Option<T::T>;
fn stable(&self, tables: &mut Tables<'tcx>) -> Self::T {
self.as_ref().map(|value| value.stable(tables))
}
}

View File

@ -36,6 +36,7 @@ pub mod mir;
pub mod ty;
pub mod visitor;
use crate::ty::{AdtDef, AdtKind, ClosureDef, ClosureKind};
pub use error::*;
use mir::mono::Instance;
use ty::{FnDef, GenericArgs};
@ -47,7 +48,7 @@ pub type Symbol = String;
pub type CrateNum = usize;
/// A unique identification number for each item accessible for the current compilation unit.
#[derive(Clone, Copy, PartialEq, Eq)]
#[derive(Clone, Copy, PartialEq, Eq, Hash)]
pub struct DefId(usize);
impl Debug for DefId {
@ -99,7 +100,13 @@ pub struct Crate {
pub is_local: bool,
}
pub type DefKind = Opaque;
#[derive(Copy, Clone, PartialEq, Eq, Debug, Hash)]
pub enum ItemKind {
Fn,
Static,
Const,
}
pub type Filename = Opaque;
/// Holds information about an item in the crate.
@ -119,13 +126,17 @@ impl CrateItem {
with(|cx| cx.name_of_def_id(self.0))
}
pub fn kind(&self) -> DefKind {
with(|cx| cx.def_kind(self.0))
pub fn kind(&self) -> ItemKind {
with(|cx| cx.item_kind(*self))
}
pub fn requires_monomorphization(&self) -> bool {
with(|cx| cx.requires_monomorphization(self.0))
}
pub fn ty(&self) -> Ty {
with(|cx| cx.def_ty(self.0))
}
}
/// Return the function where execution starts if the current
@ -204,7 +215,13 @@ pub trait Context {
fn get_lines(&self, span: &Span) -> LineInfo;
/// Returns the `kind` of given `DefId`
fn def_kind(&self, def_id: DefId) -> DefKind;
fn item_kind(&self, item: CrateItem) -> ItemKind;
/// Returns the kind of a given algebraic data type
fn adt_kind(&self, def: AdtDef) -> AdtKind;
/// Returns the type of given crate item.
fn def_ty(&self, item: DefId) -> Ty;
/// `Span` of an item
fn span_of_an_item(&self, def_id: DefId) -> Span;
@ -214,7 +231,7 @@ pub trait Context {
/// Get the body of an Instance.
/// FIXME: Monomorphize the body.
fn instance_body(&self, instance: InstanceDef) -> Body;
fn instance_body(&self, instance: InstanceDef) -> Option<Body>;
/// Get the instance type with generic substitutions applied and lifetimes erased.
fn instance_ty(&self, instance: InstanceDef) -> Ty;
@ -234,18 +251,36 @@ pub trait Context {
/// Resolve an instance from the given function definition and generic arguments.
fn resolve_instance(&self, def: FnDef, args: &GenericArgs) -> Option<Instance>;
/// Resolve an instance for drop_in_place for the given type.
fn resolve_drop_in_place(&self, ty: Ty) -> Instance;
/// Resolve instance for a function pointer.
fn resolve_for_fn_ptr(&self, def: FnDef, args: &GenericArgs) -> Option<Instance>;
/// Resolve instance for a closure with the requested type.
fn resolve_closure(
&self,
def: ClosureDef,
args: &GenericArgs,
kind: ClosureKind,
) -> Option<Instance>;
}
// A thread local variable that stores a pointer to the tables mapping between TyCtxt
// datastructures and stable MIR datastructures
scoped_thread_local! (static TLV: Cell<*const ()>);
pub fn run(context: &dyn Context, f: impl FnOnce()) {
assert!(!TLV.is_set());
let ptr: *const () = &context as *const &_ as _;
TLV.set(&Cell::new(ptr), || {
f();
});
pub fn run<F, T>(context: &dyn Context, f: F) -> Result<T, Error>
where
F: FnOnce() -> T,
{
if TLV.is_set() {
Err(Error::from("StableMIR already running"))
} else {
let ptr: *const () = &context as *const &_ as _;
TLV.set(&Cell::new(ptr), || Ok(f()))
}
}
/// Loads the current context and calls a function with it.
@ -260,7 +295,7 @@ pub fn with<R>(f: impl FnOnce(&dyn Context) -> R) -> R {
}
/// A type that provides internal information but that can still be used for debug purpose.
#[derive(Clone, Eq, PartialEq)]
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Opaque(String);
impl std::fmt::Display for Opaque {

View File

@ -1,16 +1,16 @@
use crate::mir::Body;
use crate::ty::{FnDef, GenericArgs, IndexedVal, Ty};
use crate::{with, CrateItem, DefId, Error, Opaque};
use crate::ty::{ClosureDef, ClosureKind, FnDef, GenericArgs, IndexedVal, Ty};
use crate::{with, CrateItem, DefId, Error, ItemKind, Opaque};
use std::fmt::Debug;
#[derive(Clone, Debug)]
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum MonoItem {
Fn(Instance),
Static(StaticDef),
GlobalAsm(Opaque),
}
#[derive(Copy, Clone, Debug)]
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub struct Instance {
/// The type of instance.
pub kind: InstanceKind,
@ -19,7 +19,7 @@ pub struct Instance {
pub def: InstanceDef,
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)]
pub enum InstanceKind {
/// A user defined item.
Item,
@ -33,7 +33,7 @@ pub enum InstanceKind {
impl Instance {
/// Get the body of an Instance. The body will be eagerly monomorphized.
pub fn body(&self) -> Body {
pub fn body(&self) -> Option<Body> {
with(|context| context.instance_body(self.def))
}
@ -54,6 +54,33 @@ impl Instance {
})
})
}
/// Resolve the drop in place for a given type.
pub fn resolve_drop_in_place(ty: Ty) -> Instance {
with(|cx| cx.resolve_drop_in_place(ty))
}
/// Resolve an instance for a given function pointer.
pub fn resolve_for_fn_ptr(def: FnDef, args: &GenericArgs) -> Result<Instance, crate::Error> {
with(|context| {
context.resolve_for_fn_ptr(def, args).ok_or_else(|| {
crate::Error::new(format!("Failed to resolve `{def:?}` with `{args:?}`"))
})
})
}
/// Resolve a closure with the expected kind.
pub fn resolve_closure(
def: ClosureDef,
args: &GenericArgs,
kind: ClosureKind,
) -> Result<Instance, crate::Error> {
with(|context| {
context.resolve_closure(def, args, kind).ok_or_else(|| {
crate::Error::new(format!("Failed to resolve `{def:?}` with `{args:?}`"))
})
})
}
}
/// Try to convert a crate item into an instance.
@ -86,12 +113,36 @@ impl TryFrom<Instance> for CrateItem {
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
impl From<Instance> for MonoItem {
fn from(value: Instance) -> Self {
MonoItem::Fn(value)
}
}
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
pub struct InstanceDef(usize);
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
pub struct StaticDef(pub DefId);
impl TryFrom<CrateItem> for StaticDef {
type Error = crate::Error;
fn try_from(value: CrateItem) -> Result<Self, Self::Error> {
if matches!(value.kind(), ItemKind::Static | ItemKind::Const) {
Ok(StaticDef(value.0))
} else {
Err(Error::new(format!("Expected a static item, but found: {value:?}")))
}
}
}
impl StaticDef {
pub fn ty(&self) -> Ty {
with(|cx| cx.def_ty(self.0))
}
}
impl IndexedVal for InstanceDef {
fn to_val(index: usize) -> Self {
InstanceDef(index)

View File

@ -142,7 +142,7 @@ pub trait MirVisitor {
}
let local_start = arg_count + 1;
for (idx, arg) in body.arg_locals().iter().enumerate() {
for (idx, arg) in body.inner_locals().iter().enumerate() {
self.visit_local_decl(idx + local_start, arg)
}
}
@ -417,7 +417,7 @@ pub trait MirVisitor {
fn visit_opaque(_: &Opaque) {}
/// The location of a statement / terminator in the code and the CFG.
#[derive(Clone, Copy, PartialEq, Eq)]
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct Location(Span);
impl Location {

View File

@ -4,7 +4,7 @@ use super::{
with, AllocId, DefId, Symbol,
};
use crate::{Filename, Opaque};
use std::fmt::{self, Debug, Formatter};
use std::fmt::{self, Debug, Display, Formatter};
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
pub struct Ty(pub usize);
@ -135,6 +135,46 @@ pub enum TyKind {
Bound(usize, BoundTy),
}
impl TyKind {
pub fn rigid(&self) -> Option<&RigidTy> {
if let TyKind::RigidTy(inner) = self { Some(inner) } else { None }
}
pub fn is_unit(&self) -> bool {
matches!(self, TyKind::RigidTy(RigidTy::Tuple(data)) if data.len() == 0)
}
pub fn is_trait(&self) -> bool {
matches!(self, TyKind::RigidTy(RigidTy::Dynamic(_, _, DynKind::Dyn)))
}
pub fn is_enum(&self) -> bool {
matches!(self, TyKind::RigidTy(RigidTy::Adt(def, _)) if def.kind() == AdtKind::Enum)
}
pub fn is_struct(&self) -> bool {
matches!(self, TyKind::RigidTy(RigidTy::Adt(def, _)) if def.kind() == AdtKind::Struct)
}
pub fn is_union(&self) -> bool {
matches!(self, TyKind::RigidTy(RigidTy::Adt(def, _)) if def.kind() == AdtKind::Union)
}
pub fn trait_principal(&self) -> Option<Binder<ExistentialTraitRef>> {
if let TyKind::RigidTy(RigidTy::Dynamic(predicates, _, _)) = self {
if let Some(Binder { value: ExistentialPredicate::Trait(trait_ref), bound_vars }) =
predicates.first()
{
Some(Binder { value: trait_ref.clone(), bound_vars: bound_vars.clone() })
} else {
None
}
} else {
None
}
}
}
#[derive(Clone, Debug, Eq, PartialEq)]
pub enum RigidTy {
Bool,
@ -218,6 +258,43 @@ pub struct BrNamedDef(pub DefId);
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct AdtDef(pub DefId);
#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
pub enum AdtKind {
Enum,
Union,
Struct,
}
impl AdtDef {
pub fn kind(&self) -> AdtKind {
with(|cx| cx.adt_kind(*self))
}
}
impl Display for AdtKind {
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
f.write_str(match self {
AdtKind::Enum => "enum",
AdtKind::Union => "union",
AdtKind::Struct => "struct",
})
}
}
impl AdtKind {
pub fn is_enum(&self) -> bool {
matches!(self, AdtKind::Enum)
}
pub fn is_struct(&self) -> bool {
matches!(self, AdtKind::Struct)
}
pub fn is_union(&self) -> bool {
matches!(self, AdtKind::Union)
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub struct AliasDef(pub DefId);
@ -355,6 +432,30 @@ pub struct Binder<T> {
pub bound_vars: Vec<BoundVariableKind>,
}
impl<T> Binder<T> {
pub fn skip_binder(self) -> T {
self.value
}
pub fn map_bound_ref<F, U>(&self, f: F) -> Binder<U>
where
F: FnOnce(&T) -> U,
{
let Binder { value, bound_vars } = self;
let new_value = f(value);
Binder { value: new_value, bound_vars: bound_vars.clone() }
}
pub fn map_bound<F, U>(self, f: F) -> Binder<U>
where
F: FnOnce(T) -> U,
{
let Binder { value, bound_vars } = self;
let new_value = f(value);
Binder { value: new_value, bound_vars }
}
}
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct EarlyBinder<T> {
pub value: T,
@ -393,12 +494,27 @@ pub enum ExistentialPredicate {
AutoTrait(TraitDef),
}
/// An existential reference to a trait where `Self` is not included.
///
/// The `generic_args` will include any other known argument.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ExistentialTraitRef {
pub def_id: TraitDef,
pub generic_args: GenericArgs,
}
impl Binder<ExistentialTraitRef> {
pub fn with_self_ty(&self, self_ty: Ty) -> Binder<TraitRef> {
self.map_bound_ref(|trait_ref| trait_ref.with_self_ty(self_ty))
}
}
impl ExistentialTraitRef {
pub fn with_self_ty(&self, self_ty: Ty) -> TraitRef {
TraitRef::new(self.def_id, self_ty, &self.generic_args)
}
}
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct ExistentialProjection {
pub def_id: TraitDef,
@ -504,10 +620,39 @@ impl TraitDecl {
pub type ImplTrait = EarlyBinder<TraitRef>;
/// A complete reference to a trait, i.e., one where `Self` is known.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct TraitRef {
pub def_id: TraitDef,
pub args: GenericArgs,
/// The generic arguments for this definition.
/// The first element must always be type, and it represents `Self`.
args: GenericArgs,
}
impl TraitRef {
pub fn new(def_id: TraitDef, self_ty: Ty, gen_args: &GenericArgs) -> TraitRef {
let mut args = vec![GenericArgKind::Type(self_ty)];
args.extend_from_slice(&gen_args.0);
TraitRef { def_id, args: GenericArgs(args) }
}
pub fn try_new(def_id: TraitDef, args: GenericArgs) -> Result<TraitRef, ()> {
match &args.0[..] {
[GenericArgKind::Type(_), ..] => Ok(TraitRef { def_id, args }),
_ => Err(()),
}
}
pub fn args(&self) -> &GenericArgs {
&self.args
}
pub fn self_ty(&self) -> Ty {
let GenericArgKind::Type(self_ty) = self.args.0[0] else {
panic!("Self must be a type, but found: {:?}", self.args.0[0])
};
self_ty
}
}
#[derive(Clone, Debug, Eq, PartialEq)]

View File

@ -119,7 +119,7 @@
//! # Representation
//!
//! Rust guarantees to optimize the following types `T` such that
//! [`Option<T>`] has the same size and alignment as `T`. In some
//! [`Option<T>`] has the same size, alignment, and [function call ABI] as `T`. In some
//! of these cases, Rust further guarantees that
//! `transmute::<_, Option<T>>([0u8; size_of::<T>()])` is sound and
//! produces `Option::<T>::None`. These cases are identified by the
@ -127,7 +127,7 @@
//!
//! | `T` | `transmute::<_, Option<T>>([0u8; size_of::<T>()])` sound? |
//! |---------------------------------------------------------------------|----------------------------------------------------------------------|
//! | [`Box<U>`] | when `U: Sized` |
//! | [`Box<U>`] (specifically, only `Box<U, Global>`) | when `U: Sized` |
//! | `&U` | when `U: Sized` |
//! | `&mut U` | when `U: Sized` |
//! | `fn`, `extern "C" fn`[^extern_fn] | always |
@ -135,11 +135,12 @@
//! | [`ptr::NonNull<U>`] | when `U: Sized` |
//! | `#[repr(transparent)]` struct around one of the types in this list. | when it holds for the inner type |
//!
//! [^extern_fn]: this remains true for any other ABI: `extern "abi" fn` (_e.g._, `extern "system" fn`)
//! [^extern_fn]: this remains true for any argument/return types and any other ABI: `extern "abi" fn` (_e.g._, `extern "system" fn`)
//!
//! [`Box<U>`]: ../../std/boxed/struct.Box.html
//! [`num::NonZero*`]: crate::num
//! [`ptr::NonNull<U>`]: crate::ptr::NonNull
//! [function call ABI]: ../primitive.fn.html#abi-compatibility
//!
//! This is called the "null pointer optimization" or NPO.
//!

View File

@ -1493,7 +1493,7 @@ mod prim_ref {}
///
/// ### Casting to and from integers
///
/// You cast function pointers directly to integers:
/// You can cast function pointers directly to integers:
///
/// ```rust
/// let fnptr: fn(i32) -> i32 = |x| x+2;
@ -1519,6 +1519,114 @@ mod prim_ref {}
/// Note that all of this is not portable to platforms where function pointers and data pointers
/// have different sizes.
///
/// ### ABI compatibility
///
/// Generally, when a function is declared with one signature and called via a function pointer with
/// a different signature, the two signatures must be *ABI-compatible* or else calling the function
/// via that function pointer is Undefined Behavior. ABI compatibility is a lot stricter than merely
/// having the same memory layout; for example, even if `i32` and `f32` have the same size and
/// alignment, they might be passed in different registers and hence not be ABI-compatible.
///
/// ABI compatibility as a concern only arises in code that alters the type of function pointers,
/// code that imports functions via `extern` blocks, and in code that combines `#[target_feature]`
/// with `extern fn`. Altering the type of function pointers is wildly unsafe (as in, a lot more
/// unsafe than even [`transmute_copy`][mem::transmute_copy]), and should only occur in the most
/// exceptional circumstances. Most Rust code just imports functions via `use`. `#[target_feature]`
/// is also used rarely. So, most likely you do not have to worry about ABI compatibility.
///
/// But assuming such circumstances, what are the rules? For this section, we are only considering
/// the ABI of direct Rust-to-Rust calls, not linking in general -- once functions are imported via
/// `extern` blocks, there are more things to consider that we do not go into here.
///
/// For two signatures to be considered *ABI-compatible*, they must use a compatible ABI string,
/// must take the same number of arguments, the individual argument types and the return types must
/// be ABI-compatible, and the target feature requirements must be met (see the subsection below for
/// the last point). The ABI string is declared via `extern "ABI" fn(...) -> ...`; note that
/// `fn name(...) -> ...` implicitly uses the `"Rust"` ABI string and `extern fn name(...) -> ...`
/// implicitly uses the `"C"` ABI string.
///
/// The ABI strings are guaranteed to be compatible if they are the same, or if the caller ABI
/// string is `$X-unwind` and the callee ABI string is `$X`, where `$X` is one of the following:
/// "C", "aapcs", "fastcall", "stdcall", "system", "sysv64", "thiscall", "vectorcall", "win64".
///
/// The following types are guaranteed to be ABI-compatible:
///
/// - `*const T`, `*mut T`, `&T`, `&mut T`, `Box<T>` (specifically, only `Box<T, Global>`), and
/// `NonNull<T>` are all ABI-compatible with each other for all `T`. They are also ABI-compatible
/// with each other for _different_ `T` if they have the same metadata type (`<T as
/// Pointee>::Metadata`).
/// - `usize` is ABI-compatible with the `uN` integer type of the same size, and likewise `isize` is
/// ABI-compatible with the `iN` integer type of the same size.
/// - Any two `fn` (function pointer) types are ABI-compatible with each other if they have the same
/// ABI string or the ABI string only differs in a trailing `-unwind`, independent of the rest of
/// their signature. (This means you can pass `fn()` to a function expecting `fn(i32)`, and the
/// call will be valid ABI-wise. The callee receives the result of transmuting the function pointer
/// from `fn()` to `fn(i32)`; that transmutation is itself a well-defined operation, it's just
/// almost certainly UB to later call that function pointer.)
/// - Any two types with size 0 and alignment 1 are ABI-compatible.
/// - A `repr(transparent)` type `T` is ABI-compatible with its unique non-trivial field, i.e., the
/// unique field that doesn't have size 0 and alignment 1 (if there is such a field).
/// - `i32` is ABI-compatible with `NonZeroI32`, and similar for all other integer types with their
/// matching `NonZero*` type.
/// - If `T` is guaranteed to be subject to the [null pointer
/// optimization](option/index.html#representation), then `T` and `Option<T>` are ABI-compatible.
///
/// Furthermore, ABI compatibility satisfies the following general properties:
///
/// - Every type is ABI-compatible with itself.
/// - If `T1` and `T2` are ABI-compatible, then two `repr(C)` types that only differ because one
/// field type was changed from `T1` to `T2` are ABI-compatible.
/// - If `T1` and `T2` are ABI-compatible and `T2` and `T3` are ABI-compatible, then so are `T1` and
/// `T3` (i.e., ABI-compatibility is transitive).
/// - If `T1` and `T2` are ABI-compatible, then so are `T2` and `T1` (i.e., ABI-compatibility is
/// symmetric).
///
/// More signatures can be ABI-compatible on specific targets, but that should not be relied upon
/// since it is not portable and not a stable guarantee.
///
/// Noteworthy cases of types *not* being ABI-compatible in general are:
/// * `bool` vs `u8`, and `i32` vs `u32`: on some targets, the calling conventions for these types
/// differ in terms of what they guarantee for the remaining bits in the register that are not
/// used by the value.
/// * `i32` vs `f32` are not compatible either, as has already been mentioned above.
/// * `struct Foo(u32)` and `u32` are not compatible (without `repr(transparent)`) since structs are
/// aggregate types and often passed in a different way than primitives like `i32`.
///
/// Note that these rules describe when two completely known types are ABI-compatible. When
/// considering ABI compatibility of a type declared in another crate (including the standard
/// library), consider that any type that has a private field or the `#[non_exhaustive]` attribute
/// may change its layout as a non-breaking update unless documented otherwise -- so for instance,
/// even if such a type is a 1-ZST or `repr(transparent)` right now, this might change with any
/// library version bump.
///
/// If the declared signature and the signature of the function pointer are ABI-compatible, then the
/// function call behaves as if every argument was [`transmute`d][mem::transmute] from the
/// type in the function pointer to the type at the function declaration, and the return value is
/// [`transmute`d][mem::transmute] from the type in the declaration to the type in the
/// pointer. All the usual caveats and concerns around transmutation apply; for instance, if the
/// function expects a `NonNullI32` and the function pointer uses the ABI-compatible type
/// `Option<NonNullI32>`, and the value used for the argument is `None`, then this call is Undefined
/// Behavior since transmuting `None::<NonNullI32>` to `NonNullI32` violates the non-null
/// requirement.
///
/// #### Requirements concerning target features
///
/// Under some conditions, the signature used by the caller and the callee can be ABI-incompatible
/// even if the exact same ABI string and types are being used. As an example, the
/// `std::arch::x86_64::__m256` type has a different `extern "C"` ABI when the `avx` feature is
/// enabled vs when it is not enabled.
///
/// Therefore, to ensure ABI compatibility when code using different target features is combined
/// (such as via `#[target_feature]`), we further require that one of the following conditions is
/// met:
///
/// - The function uses the `"Rust"` ABI string (which is the default without `extern`).
/// - Caller and callee are using the exact same set of target features. For the callee we consider
/// the features enabled (via `#[target_feature]` and `-C target-feature`/`-C target-cpu`) at the
/// declaration site; for the caller we consider the features enabled at the call site.
/// - Neither any argument nor the return value involves a SIMD type (`#[repr(simd)]`) that is not
/// behind a pointer indirection (i.e., `*mut __m256` is fine, but `(i32, __m256)` is not).
///
/// ### Trait implementations
///
/// In this documentation the shorthand `fn (T₁, T₂, …, Tₙ)` is used to represent non-variadic

View File

@ -49,7 +49,7 @@ fn test_stable_mir(_tcx: TyCtxt<'_>) -> ControlFlow<()> {
assert!(generic.iter().all(|item| mir::mono::Instance::try_from(*item).is_err()));
for instance in instances {
test_body(instance.body())
test_body(instance.body().unwrap())
}
ControlFlow::Continue(())
}
@ -61,8 +61,10 @@ fn test_body(body: mir::Body) {
Call { func, .. } => {
let TyKind::RigidTy(ty) = func.ty(body.locals()).kind() else { unreachable!() };
let RigidTy::FnDef(def, args) = ty else { unreachable!() };
let result = Instance::resolve(def, &args);
assert!(result.is_ok());
let instance = Instance::resolve(def, &args).unwrap();
let mangled_name = instance.mangled_name();
let body = instance.body();
assert!(body.is_some() || mangled_name == "setpwent", "Failed: {func:?}");
}
Goto { .. } | Assert { .. } | SwitchInt { .. } | Return | Drop { .. } => {
/* Do nothing */
@ -105,10 +107,16 @@ fn generate_input(path: &str) -> std::io::Result<()> {
LEN > 0 && a[0]
}}
extern "C" {{
// Body should not be available.
fn setpwent();
}}
pub fn monomorphic() {{
let v = vec![10];
let dup = ty_param(&v);
assert_eq!(v, dup);
unsafe {{ setpwent() }};
}}
pub mod foo {{

View File

@ -22,6 +22,7 @@ extern crate stable_mir;
use rustc_hir::def::DefKind;
use rustc_middle::ty::TyCtxt;
use rustc_smir::rustc_internal;
use stable_mir::ItemKind;
use stable_mir::mir::mono::Instance;
use stable_mir::ty::{RigidTy, TyKind};
use std::assert_matches::assert_matches;
@ -120,13 +121,13 @@ fn test_stable_mir(_tcx: TyCtxt<'_>) -> ControlFlow<()> {
let monomorphic = get_item(&items, (DefKind::Fn, "monomorphic")).unwrap();
let instance = Instance::try_from(monomorphic.clone()).unwrap();
for block in instance.body().blocks {
for block in instance.body().unwrap().blocks {
match &block.terminator.kind {
stable_mir::mir::TerminatorKind::Call { func, .. } => {
let TyKind::RigidTy(ty) = func.ty(&body.locals()).kind() else { unreachable!() };
let RigidTy::FnDef(def, args) = ty else { unreachable!() };
let next_func = Instance::resolve(def, &args).unwrap();
match next_func.body().locals()[1].ty.kind() {
match next_func.body().unwrap().locals()[1].ty.kind() {
TyKind::RigidTy(RigidTy::Uint(_)) | TyKind::RigidTy(RigidTy::Tuple(_)) => {}
other => panic!("{other:?}"),
}
@ -172,7 +173,8 @@ fn get_item<'a>(
item: (DefKind, &str),
) -> Option<&'a stable_mir::CrateItem> {
items.iter().find(|crate_item| {
crate_item.kind().to_string() == format!("{:?}", item.0) && crate_item.name() == item.1
matches!((item.0, crate_item.kind()), (DefKind::Fn, ItemKind::Fn) | (DefKind::Const,
ItemKind::Const)) && crate_item.name() == item.1
})
}

View File

@ -19,11 +19,11 @@ extern crate rustc_driver;
extern crate rustc_interface;
extern crate stable_mir;
use rustc_hir::def::DefKind;
use rustc_middle::ty::TyCtxt;
use rustc_smir::rustc_internal;
use stable_mir::mir::{ProjectionElem, Rvalue, StatementKind};
use stable_mir::ty::{RigidTy, TyKind};
use stable_mir::ItemKind;
use std::assert_matches::assert_matches;
use std::io::Write;
use std::ops::ControlFlow;
@ -33,7 +33,7 @@ const CRATE_NAME: &str = "input";
/// Tests projections within Place objects
fn test_place_projections(_tcx: TyCtxt<'_>) -> ControlFlow<()> {
let items = stable_mir::all_local_items();
let body = get_item(&items, (DefKind::Fn, "projections")).unwrap().body();
let body = get_item(&items, (ItemKind::Fn, "projections")).unwrap().body();
assert_eq!(body.blocks.len(), 4);
// The first statement assigns `&s.c` to a local. The projections include a deref for `s`, since
// `s` is passed as a reference argument, and a field access for field `c`.
@ -131,10 +131,10 @@ fn test_place_projections(_tcx: TyCtxt<'_>) -> ControlFlow<()> {
// Use internal API to find a function in a crate.
fn get_item<'a>(
items: &'a stable_mir::CrateItems,
item: (DefKind, &str),
item: (ItemKind, &str),
) -> Option<&'a stable_mir::CrateItem> {
items.iter().find(|crate_item| {
crate_item.kind().to_string() == format!("{:?}", item.0) && crate_item.name() == item.1
crate_item.kind() == item.0 && crate_item.name() == item.1
})
}

View File

@ -40,7 +40,7 @@ fn test_visitor(_tcx: TyCtxt<'_>) -> ControlFlow<()> {
let exit_fn = main_visitor.calls.last().unwrap();
assert!(exit_fn.mangled_name().contains("exit_fn"), "Unexpected last function: {exit_fn:?}");
let exit_body = exit_fn.body();
let exit_body = exit_fn.body().unwrap();
let exit_visitor = TestVisitor::collect(&exit_body);
assert!(exit_visitor.ret_val.is_some());
assert_eq!(exit_visitor.args.len(), 1);

View File

@ -231,8 +231,7 @@ macro_rules! test_abi_compatible {
};
}
// Compatibility of pointers is probably de-facto guaranteed,
// but that does not seem to be documented.
// Compatibility of pointers.
test_abi_compatible!(ptr_mut, *const i32, *mut i32);
test_abi_compatible!(ptr_pointee, *const i32, *const Vec<i32>);
test_abi_compatible!(ref_mut, &i32, &mut i32);
@ -241,14 +240,15 @@ test_abi_compatible!(box_ptr, Box<i32>, *const i32);
test_abi_compatible!(nonnull_ptr, NonNull<i32>, *const i32);
test_abi_compatible!(fn_fn, fn(), fn(i32) -> i32);
// Some further guarantees we will likely (have to) make.
// Compatibility of 1-ZST.
test_abi_compatible!(zst_unit, Zst, ());
#[cfg(not(any(target_arch = "sparc64")))]
test_abi_compatible!(zst_array, Zst, [u8; 0]);
test_abi_compatible!(nonzero_int, NonZeroI32, i32);
// `DispatchFromDyn` relies on ABI compatibility.
// This is interesting since these types are not `repr(transparent)`.
// This is interesting since these types are not `repr(transparent)`. So this is not part of our
// public ABI guarantees, but is relied on by the compiler.
test_abi_compatible!(rc, Rc<i32>, *mut i32);
test_abi_compatible!(arc, Arc<i32>, *mut i32);

View File

@ -3,6 +3,11 @@ error[E0425]: cannot find value `a` in this scope
|
LL | [a.., a] => {}
| ^ not found in this scope
|
help: if you meant to collect the rest of the slice in `a`, use the at operator
|
LL | [a @ .., a] => {}
| +
error: aborting due to previous error

View File

@ -0,0 +1,9 @@
fn main() {
match &[1, 2, 3][..] {
[1, rest..] => println!("{rest:?}"),
//~^ ERROR cannot find value `rest` in this scope
//~| ERROR cannot find value `rest` in this scope
//~| ERROR `X..` patterns in slices are experimental
_ => {}
}
}

View File

@ -0,0 +1,30 @@
error[E0425]: cannot find value `rest` in this scope
--> $DIR/range-pattern-meant-to-be-slice-rest-pattern.rs:3:13
|
LL | [1, rest..] => println!("{rest:?}"),
| ^^^^ not found in this scope
|
help: if you meant to collect the rest of the slice in `rest`, use the at operator
|
LL | [1, rest @ ..] => println!("{rest:?}"),
| +
error[E0425]: cannot find value `rest` in this scope
--> $DIR/range-pattern-meant-to-be-slice-rest-pattern.rs:3:35
|
LL | [1, rest..] => println!("{rest:?}"),
| ^^^^ not found in this scope
error[E0658]: `X..` patterns in slices are experimental
--> $DIR/range-pattern-meant-to-be-slice-rest-pattern.rs:3:13
|
LL | [1, rest..] => println!("{rest:?}"),
| ^^^^^^
|
= note: see issue #67264 <https://github.com/rust-lang/rust/issues/67264> for more information
= help: add `#![feature(half_open_range_patterns_in_slices)]` to the crate attributes to enable
error: aborting due to 3 previous errors
Some errors have detailed explanations: E0425, E0658.
For more information about an error, try `rustc --explain E0425`.

View File

@ -3,6 +3,11 @@ error[E0425]: cannot find value `_y` in this scope
|
LL | let [_y..] = [Box::new(1), Box::new(2)];
| ^^ not found in this scope
|
help: if you meant to collect the rest of the slice in `_y`, use the at operator
|
LL | let [_y @ ..] = [Box::new(1), Box::new(2)];
| +
error[E0658]: `X..` patterns in slices are experimental
--> $DIR/issue-105946.rs:6:10