Rollup merge of #70896 - cuviper:optional-chain, r=scottmcm

Implement Chain with Option fuses

The iterators are now "fused" with `Option` so we don't need separate state to track which part is already exhausted, and we may also get niche layout for `None`. We don't use the real `Fuse` adapter because its specialization for `FusedIterator` unconditionally descends into the iterator, and that could be expensive to keep revisiting stuff like nested chains. It also hurts compiler performance to add more iterator layers to `Chain`.

This change was inspired by the [proposal](https://internals.rust-lang.org/t/proposal-implement-iter-chain-using-fuse/12006) on the internals forum. This is an alternate to #70332, directly employing some of the same `Fuse` optimizations as #70366 and #70750.

r? @scottmcm
This commit is contained in:
Mazdak Farrokhzad 2020-04-09 05:29:43 +02:00 committed by GitHub
commit ecc4e2a647
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,8 +1,7 @@
use crate::iter::{DoubleEndedIterator, FusedIterator, Iterator, TrustedLen};
use crate::ops::Try;
use crate::usize;
use super::super::{DoubleEndedIterator, FusedIterator, Iterator, TrustedLen};
/// An iterator that links two iterators together, in a chain.
///
/// This `struct` is created by the [`chain`] method on [`Iterator`]. See its
@ -14,37 +13,34 @@ use super::super::{DoubleEndedIterator, FusedIterator, Iterator, TrustedLen};
#[must_use = "iterators are lazy and do nothing unless consumed"]
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Chain<A, B> {
a: A,
b: B,
state: ChainState,
// These are "fused" with `Option` so we don't need separate state to track which part is
// already exhausted, and we may also get niche layout for `None`. We don't use the real `Fuse`
// adapter because its specialization for `FusedIterator` unconditionally descends into the
// iterator, and that could be expensive to keep revisiting stuff like nested chains. It also
// hurts compiler performance to add more iterator layers to `Chain`.
a: Option<A>,
b: Option<B>,
}
impl<A, B> Chain<A, B> {
pub(in super::super) fn new(a: A, b: B) -> Chain<A, B> {
Chain { a, b, state: ChainState::Both }
Chain { a: Some(a), b: Some(b) }
}
}
// The iterator protocol specifies that iteration ends with the return value
// `None` from `.next()` (or `.next_back()`) and it is unspecified what
// further calls return. The chain adaptor must account for this since it uses
// two subiterators.
//
// It uses three states:
//
// - Both: `a` and `b` are remaining
// - Front: `a` remaining
// - Back: `b` remaining
//
// The fourth state (neither iterator is remaining) only occurs after Chain has
// returned None once, so we don't need to store this state.
#[derive(Clone, Debug)]
enum ChainState {
// both front and back iterator are remaining
Both,
// only front is remaining
Front,
// only back is remaining
Back,
/// Fuse the iterator if the expression is `None`.
macro_rules! fuse {
($self:ident . $iter:ident . $($call:tt)+) => {
match $self.$iter {
Some(ref mut iter) => match iter.$($call)+ {
None => {
$self.$iter = None;
None
}
item => item,
},
None => None,
}
};
}
#[stable(feature = "rust1", since = "1.0.0")]
@ -57,88 +53,68 @@ where
#[inline]
fn next(&mut self) -> Option<A::Item> {
match self.state {
ChainState::Both => match self.a.next() {
elt @ Some(..) => elt,
None => {
self.state = ChainState::Back;
self.b.next()
}
},
ChainState::Front => self.a.next(),
ChainState::Back => self.b.next(),
match fuse!(self.a.next()) {
None => fuse!(self.b.next()),
item => item,
}
}
#[inline]
#[rustc_inherit_overflow_checks]
fn count(self) -> usize {
match self.state {
ChainState::Both => self.a.count() + self.b.count(),
ChainState::Front => self.a.count(),
ChainState::Back => self.b.count(),
}
let a_count = match self.a {
Some(a) => a.count(),
None => 0,
};
let b_count = match self.b {
Some(b) => b.count(),
None => 0,
};
a_count + b_count
}
fn try_fold<Acc, F, R>(&mut self, init: Acc, mut f: F) -> R
fn try_fold<Acc, F, R>(&mut self, mut acc: Acc, mut f: F) -> R
where
Self: Sized,
F: FnMut(Acc, Self::Item) -> R,
R: Try<Ok = Acc>,
{
let mut accum = init;
match self.state {
ChainState::Both | ChainState::Front => {
accum = self.a.try_fold(accum, &mut f)?;
if let ChainState::Both = self.state {
self.state = ChainState::Back;
}
}
_ => {}
if let Some(ref mut a) = self.a {
acc = a.try_fold(acc, &mut f)?;
self.a = None;
}
if let ChainState::Back = self.state {
accum = self.b.try_fold(accum, &mut f)?;
if let Some(ref mut b) = self.b {
acc = b.try_fold(acc, f)?;
self.b = None;
}
Try::from_ok(accum)
Try::from_ok(acc)
}
fn fold<Acc, F>(self, init: Acc, mut f: F) -> Acc
fn fold<Acc, F>(self, mut acc: Acc, mut f: F) -> Acc
where
F: FnMut(Acc, Self::Item) -> Acc,
{
let mut accum = init;
match self.state {
ChainState::Both | ChainState::Front => {
accum = self.a.fold(accum, &mut f);
}
_ => {}
if let Some(a) = self.a {
acc = a.fold(acc, &mut f);
}
match self.state {
ChainState::Both | ChainState::Back => {
accum = self.b.fold(accum, &mut f);
}
_ => {}
if let Some(b) = self.b {
acc = b.fold(acc, f);
}
accum
acc
}
#[inline]
fn nth(&mut self, mut n: usize) -> Option<A::Item> {
match self.state {
ChainState::Both | ChainState::Front => {
for x in self.a.by_ref() {
if n == 0 {
return Some(x);
}
n -= 1;
}
if let ChainState::Both = self.state {
self.state = ChainState::Back;
if let Some(ref mut a) = self.a {
while let Some(x) = a.next() {
if n == 0 {
return Some(x);
}
n -= 1;
}
ChainState::Back => {}
self.a = None;
}
if let ChainState::Back = self.state { self.b.nth(n) } else { None }
fuse!(self.b.nth(n))
}
#[inline]
@ -146,39 +122,32 @@ where
where
P: FnMut(&Self::Item) -> bool,
{
match self.state {
ChainState::Both => match self.a.find(&mut predicate) {
None => {
self.state = ChainState::Back;
self.b.find(predicate)
}
v => v,
},
ChainState::Front => self.a.find(predicate),
ChainState::Back => self.b.find(predicate),
match fuse!(self.a.find(&mut predicate)) {
None => fuse!(self.b.find(predicate)),
item => item,
}
}
#[inline]
fn last(self) -> Option<A::Item> {
match self.state {
ChainState::Both => {
// Must exhaust a before b.
let a_last = self.a.last();
let b_last = self.b.last();
b_last.or(a_last)
}
ChainState::Front => self.a.last(),
ChainState::Back => self.b.last(),
}
// Must exhaust a before b.
let a_last = match self.a {
Some(a) => a.last(),
None => None,
};
let b_last = match self.b {
Some(b) => b.last(),
None => None,
};
b_last.or(a_last)
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
match self.state {
ChainState::Both => {
let (a_lower, a_upper) = self.a.size_hint();
let (b_lower, b_upper) = self.b.size_hint();
match self {
Chain { a: Some(a), b: Some(b) } => {
let (a_lower, a_upper) = a.size_hint();
let (b_lower, b_upper) = b.size_hint();
let lower = a_lower.saturating_add(b_lower);
@ -189,8 +158,9 @@ where
(lower, upper)
}
ChainState::Front => self.a.size_hint(),
ChainState::Back => self.b.size_hint(),
Chain { a: Some(a), b: None } => a.size_hint(),
Chain { a: None, b: Some(b) } => b.size_hint(),
Chain { a: None, b: None } => (0, Some(0)),
}
}
}
@ -203,82 +173,71 @@ where
{
#[inline]
fn next_back(&mut self) -> Option<A::Item> {
match self.state {
ChainState::Both => match self.b.next_back() {
elt @ Some(..) => elt,
None => {
self.state = ChainState::Front;
self.a.next_back()
}
},
ChainState::Front => self.a.next_back(),
ChainState::Back => self.b.next_back(),
match fuse!(self.b.next_back()) {
None => fuse!(self.a.next_back()),
item => item,
}
}
#[inline]
fn nth_back(&mut self, mut n: usize) -> Option<A::Item> {
match self.state {
ChainState::Both | ChainState::Back => {
for x in self.b.by_ref().rev() {
if n == 0 {
return Some(x);
}
n -= 1;
}
if let ChainState::Both = self.state {
self.state = ChainState::Front;
if let Some(ref mut b) = self.b {
while let Some(x) = b.next_back() {
if n == 0 {
return Some(x);
}
n -= 1;
}
ChainState::Front => {}
self.b = None;
}
if let ChainState::Front = self.state { self.a.nth_back(n) } else { None }
fuse!(self.a.nth_back(n))
}
fn try_rfold<Acc, F, R>(&mut self, init: Acc, mut f: F) -> R
#[inline]
fn rfind<P>(&mut self, mut predicate: P) -> Option<Self::Item>
where
P: FnMut(&Self::Item) -> bool,
{
match fuse!(self.b.rfind(&mut predicate)) {
None => fuse!(self.a.rfind(predicate)),
item => item,
}
}
fn try_rfold<Acc, F, R>(&mut self, mut acc: Acc, mut f: F) -> R
where
Self: Sized,
F: FnMut(Acc, Self::Item) -> R,
R: Try<Ok = Acc>,
{
let mut accum = init;
match self.state {
ChainState::Both | ChainState::Back => {
accum = self.b.try_rfold(accum, &mut f)?;
if let ChainState::Both = self.state {
self.state = ChainState::Front;
}
}
_ => {}
if let Some(ref mut b) = self.b {
acc = b.try_rfold(acc, &mut f)?;
self.b = None;
}
if let ChainState::Front = self.state {
accum = self.a.try_rfold(accum, &mut f)?;
if let Some(ref mut a) = self.a {
acc = a.try_rfold(acc, f)?;
self.a = None;
}
Try::from_ok(accum)
Try::from_ok(acc)
}
fn rfold<Acc, F>(self, init: Acc, mut f: F) -> Acc
fn rfold<Acc, F>(self, mut acc: Acc, mut f: F) -> Acc
where
F: FnMut(Acc, Self::Item) -> Acc,
{
let mut accum = init;
match self.state {
ChainState::Both | ChainState::Back => {
accum = self.b.rfold(accum, &mut f);
}
_ => {}
if let Some(b) = self.b {
acc = b.rfold(acc, &mut f);
}
match self.state {
ChainState::Both | ChainState::Front => {
accum = self.a.rfold(accum, &mut f);
}
_ => {}
if let Some(a) = self.a {
acc = a.rfold(acc, f);
}
accum
acc
}
}
// Note: *both* must be fused to handle double-ended iterators.
// Now that we "fuse" both sides, we *could* implement this unconditionally,
// but we should be cautious about committing to that in the public API.
#[stable(feature = "fused", since = "1.26.0")]
impl<A, B> FusedIterator for Chain<A, B>
where