Auto merge of #62008 - ia0:issues_61053, r=petrochenkov

Add meta-variable checks in macro definitions

This is an implementation of #61053. It is not sound (some errors are not reported) and not complete (reports may not be actual errors). This is due to the possibility to define macros in macros in indirect ways. See module documentation of `macro_check` for more details.

What remains to be done:
- [x] Migrate from an error to an allow-by-default lint.
- [x] Add more comments in particular for the handling of nested macros.
- [x] Add more tests if needed.
- [x] Try to avoid cloning too much (one idea is to use lists on the stack).
- [ ] Run crater with deny-by-default lint (measure rate of false positives).
    - [ ] Remove extra commit for deny-by-default lint
- [x] Create a PR to remove the old `question_mark_macro_sep` lint #62160
This commit is contained in:
bors 2019-07-20 02:39:04 +00:00
commit e9d2227328
18 changed files with 946 additions and 68 deletions

View File

@ -362,6 +362,12 @@ pub mod parser {
Warn,
"ill-formed attribute inputs that were previously accepted and used in practice"
}
declare_lint! {
pub META_VARIABLE_MISUSE,
Allow,
"possible meta-variable misuse at macro definition"
}
}
declare_lint! {
@ -448,6 +454,7 @@ declare_lint_pass! {
MACRO_USE_EXTERN_CRATE,
MACRO_EXPANDED_MACRO_EXPORTS_ACCESSED_BY_ABSOLUTE_PATHS,
parser::ILL_FORMED_ATTRIBUTE_INPUT,
parser::META_VARIABLE_MISUSE,
DEPRECATED_IN_FUTURE,
AMBIGUOUS_ASSOCIATED_ITEMS,
NESTED_IMPL_TRAIT,

View File

@ -27,7 +27,7 @@ use crate::hir::def_id::{CrateNum, LOCAL_CRATE};
use crate::hir::intravisit;
use crate::hir;
use crate::lint::builtin::BuiltinLintDiagnostics;
use crate::lint::builtin::parser::ILL_FORMED_ATTRIBUTE_INPUT;
use crate::lint::builtin::parser::{ILL_FORMED_ATTRIBUTE_INPUT, META_VARIABLE_MISUSE};
use crate::session::{Session, DiagnosticMessageId};
use crate::ty::TyCtxt;
use crate::ty::query::Providers;
@ -82,6 +82,7 @@ impl Lint {
pub fn from_parser_lint_id(lint_id: BufferedEarlyLintId) -> &'static Self {
match lint_id {
BufferedEarlyLintId::IllFormedAttributeInput => ILL_FORMED_ATTRIBUTE_INPUT,
BufferedEarlyLintId::MetaVariableMisuse => META_VARIABLE_MISUSE,
}
}

View File

@ -10,6 +10,7 @@ use syntax_pos::MultiSpan;
/// passed to `rustc::lint::Lint::from_parser_lint_id` to get a `rustc::lint::Lint`.
pub enum BufferedEarlyLintId {
IllFormedAttributeInput,
MetaVariableMisuse,
}
/// Stores buffered lint info which can later be passed to `librustc`.

View File

@ -0,0 +1,626 @@
//! Checks that meta-variables in macro definition are correctly declared and used.
//!
//! # What is checked
//!
//! ## Meta-variables must not be bound twice
//!
//! ```
//! macro_rules! foo { ($x:tt $x:tt) => { $x }; }
//! ```
//!
//! This check is sound (no false-negative) and complete (no false-positive).
//!
//! ## Meta-variables must not be free
//!
//! ```
//! macro_rules! foo { () => { $x }; }
//! ```
//!
//! This check is also done at macro instantiation but only if the branch is taken.
//!
//! ## Meta-variables must repeat at least as many times as their binder
//!
//! ```
//! macro_rules! foo { ($($x:tt)*) => { $x }; }
//! ```
//!
//! This check is also done at macro instantiation but only if the branch is taken.
//!
//! ## Meta-variables must repeat with the same Kleene operators as their binder
//!
//! ```
//! macro_rules! foo { ($($x:tt)+) => { $($x)* }; }
//! ```
//!
//! This check is not done at macro instantiation.
//!
//! # Disclaimer
//!
//! In the presence of nested macros (a macro defined in a macro), those checks may have false
//! positives and false negatives. We try to detect those cases by recognizing potential macro
//! definitions in RHSes, but nested macros may be hidden through the use of particular values of
//! meta-variables.
//!
//! ## Examples of false positive
//!
//! False positives can come from cases where we don't recognize a nested macro, because it depends
//! on particular values of meta-variables. In the following example, we think both instances of
//! `$x` are free, which is a correct statement if `$name` is anything but `macro_rules`. But when
//! `$name` is `macro_rules`, like in the instantiation below, then `$x:tt` is actually a binder of
//! the nested macro and `$x` is bound to it.
//!
//! ```
//! macro_rules! foo { ($name:ident) => { $name! bar { ($x:tt) => { $x }; } }; }
//! foo!(macro_rules);
//! ```
//!
//! False positives can also come from cases where we think there is a nested macro while there
//! isn't. In the following example, we think `$x` is free, which is incorrect because `bar` is not
//! a nested macro since it is not evaluated as code by `stringify!`.
//!
//! ```
//! macro_rules! foo { () => { stringify!(macro_rules! bar { () => { $x }; }) }; }
//! ```
//!
//! ## Examples of false negative
//!
//! False negatives can come from cases where we don't recognize a meta-variable, because it depends
//! on particular values of meta-variables. In the following examples, we don't see that if `$d` is
//! instantiated with `$` then `$d z` becomes `$z` in the nested macro definition and is thus a free
//! meta-variable. Note however, that if `foo` is instantiated, then we would check the definition
//! of `bar` and would see the issue.
//!
//! ```
//! macro_rules! foo { ($d:tt) => { macro_rules! bar { ($y:tt) => { $d z }; } }; }
//! ```
//!
//! # How it is checked
//!
//! There are 3 main functions: `check_binders`, `check_occurrences`, and `check_nested_macro`. They
//! all need some kind of environment.
//!
//! ## Environments
//!
//! Environments are used to pass information.
//!
//! ### From LHS to RHS
//!
//! When checking a LHS with `check_binders`, we produce (and use) an environment for binders,
//! namely `Binders`. This is a mapping from binder name to information about that binder: the span
//! of the binder for error messages and the stack of Kleene operators under which it was bound in
//! the LHS.
//!
//! This environment is used by both the LHS and RHS. The LHS uses it to detect duplicate binders.
//! The RHS uses it to detect the other errors.
//!
//! ### From outer macro to inner macro
//!
//! When checking the RHS of an outer macro and we detect a nested macro definition, we push the
//! current state, namely `MacroState`, to an environment of nested macro definitions. Each state
//! stores the LHS binders when entering the macro definition as well as the stack of Kleene
//! operators under which the inner macro is defined in the RHS.
//!
//! This environment is a stack representing the nesting of macro definitions. As such, the stack of
//! Kleene operators under which a meta-variable is repeating is the concatenation of the stacks
//! stored when entering a macro definition starting from the state in which the meta-variable is
//! bound.
use crate::ast::NodeId;
use crate::early_buffered_lints::BufferedEarlyLintId;
use crate::ext::tt::quoted::{KleeneToken, TokenTree};
use crate::parse::token::TokenKind;
use crate::parse::token::{DelimToken, Token};
use crate::parse::ParseSess;
use crate::symbol::{kw, sym};
use rustc_data_structures::fx::FxHashMap;
use smallvec::SmallVec;
use syntax_pos::{symbol::Ident, MultiSpan, Span};
/// Stack represented as linked list.
///
/// Those are used for environments because they grow incrementally and are not mutable.
enum Stack<'a, T> {
/// Empty stack.
Empty,
/// A non-empty stack.
Push {
/// The top element.
top: T,
/// The previous elements.
prev: &'a Stack<'a, T>,
},
}
impl<'a, T> Stack<'a, T> {
/// Returns whether a stack is empty.
fn is_empty(&self) -> bool {
match *self {
Stack::Empty => true,
_ => false,
}
}
/// Returns a new stack with an element of top.
fn push(&'a self, top: T) -> Stack<'a, T> {
Stack::Push { top, prev: self }
}
}
impl<'a, T> Iterator for &'a Stack<'a, T> {
type Item = &'a T;
// Iterates from top to bottom of the stack.
fn next(&mut self) -> Option<&'a T> {
match *self {
Stack::Empty => None,
Stack::Push { ref top, ref prev } => {
*self = prev;
Some(top)
}
}
}
}
impl From<&Stack<'_, KleeneToken>> for SmallVec<[KleeneToken; 1]> {
fn from(ops: &Stack<'_, KleeneToken>) -> SmallVec<[KleeneToken; 1]> {
let mut ops: SmallVec<[KleeneToken; 1]> = ops.cloned().collect();
// The stack is innermost on top. We want outermost first.
ops.reverse();
ops
}
}
/// Information attached to a meta-variable binder in LHS.
struct BinderInfo {
/// The span of the meta-variable in LHS.
span: Span,
/// The stack of Kleene operators (outermost first).
ops: SmallVec<[KleeneToken; 1]>,
}
/// An environment of meta-variables to their binder information.
type Binders = FxHashMap<Ident, BinderInfo>;
/// The state at which we entered a macro definition in the RHS of another macro definition.
struct MacroState<'a> {
/// The binders of the branch where we entered the macro definition.
binders: &'a Binders,
/// The stack of Kleene operators (outermost first) where we entered the macro definition.
ops: SmallVec<[KleeneToken; 1]>,
}
/// Checks that meta-variables are used correctly in a macro definition.
///
/// Arguments:
/// - `sess` is used to emit diagnostics and lints
/// - `node_id` is used to emit lints
/// - `span` is used when no spans are available
/// - `lhses` and `rhses` should have the same length and represent the macro definition
pub fn check_meta_variables(
sess: &ParseSess,
node_id: NodeId,
span: Span,
lhses: &[TokenTree],
rhses: &[TokenTree],
) -> bool {
if lhses.len() != rhses.len() {
sess.span_diagnostic.span_bug(span, "length mismatch between LHSes and RHSes")
}
let mut valid = true;
for (lhs, rhs) in lhses.iter().zip(rhses.iter()) {
let mut binders = Binders::default();
check_binders(sess, node_id, lhs, &Stack::Empty, &mut binders, &Stack::Empty, &mut valid);
check_occurrences(sess, node_id, rhs, &Stack::Empty, &binders, &Stack::Empty, &mut valid);
}
valid
}
/// Checks `lhs` as part of the LHS of a macro definition, extends `binders` with new binders, and
/// sets `valid` to false in case of errors.
///
/// Arguments:
/// - `sess` is used to emit diagnostics and lints
/// - `node_id` is used to emit lints
/// - `lhs` is checked as part of a LHS
/// - `macros` is the stack of possible outer macros
/// - `binders` contains the binders of the LHS
/// - `ops` is the stack of Kleene operators from the LHS
/// - `valid` is set in case of errors
fn check_binders(
sess: &ParseSess,
node_id: NodeId,
lhs: &TokenTree,
macros: &Stack<'_, MacroState<'_>>,
binders: &mut Binders,
ops: &Stack<'_, KleeneToken>,
valid: &mut bool,
) {
match *lhs {
TokenTree::Token(..) => {}
// This can only happen when checking a nested macro because this LHS is then in the RHS of
// the outer macro. See run-pass/macros/macro-of-higher-order.rs where $y:$fragment in the
// LHS of the nested macro (and RHS of the outer macro) is parsed as MetaVar(y) Colon
// MetaVar(fragment) and not as MetaVarDecl(y, fragment).
TokenTree::MetaVar(span, name) => {
if macros.is_empty() {
sess.span_diagnostic.span_bug(span, "unexpected MetaVar in lhs");
}
// There are 3 possibilities:
if let Some(prev_info) = binders.get(&name) {
// 1. The meta-variable is already bound in the current LHS: This is an error.
let mut span = MultiSpan::from_span(span);
span.push_span_label(prev_info.span, "previous declaration".into());
buffer_lint(sess, span, node_id, "duplicate matcher binding");
} else if get_binder_info(macros, binders, name).is_none() {
// 2. The meta-variable is free: This is a binder.
binders.insert(name, BinderInfo { span, ops: ops.into() });
} else {
// 3. The meta-variable is bound: This is an occurrence.
check_occurrences(sess, node_id, lhs, macros, binders, ops, valid);
}
}
// Similarly, this can only happen when checking a toplevel macro.
TokenTree::MetaVarDecl(span, name, _kind) => {
if !macros.is_empty() {
sess.span_diagnostic.span_bug(span, "unexpected MetaVarDecl in nested lhs");
}
if let Some(prev_info) = get_binder_info(macros, binders, name) {
// Duplicate binders at the top-level macro definition are errors. The lint is only
// for nested macro definitions.
sess.span_diagnostic
.struct_span_err(span, "duplicate matcher binding")
.span_note(prev_info.span, "previous declaration was here")
.emit();
*valid = false;
} else {
binders.insert(name, BinderInfo { span, ops: ops.into() });
}
}
TokenTree::Delimited(_, ref del) => {
for tt in &del.tts {
check_binders(sess, node_id, tt, macros, binders, ops, valid);
}
}
TokenTree::Sequence(_, ref seq) => {
let ops = ops.push(seq.kleene);
for tt in &seq.tts {
check_binders(sess, node_id, tt, macros, binders, &ops, valid);
}
}
}
}
/// Returns the binder information of a meta-variable.
///
/// Arguments:
/// - `macros` is the stack of possible outer macros
/// - `binders` contains the current binders
/// - `name` is the name of the meta-variable we are looking for
fn get_binder_info<'a>(
mut macros: &'a Stack<'a, MacroState<'a>>,
binders: &'a Binders,
name: Ident,
) -> Option<&'a BinderInfo> {
binders.get(&name).or_else(|| macros.find_map(|state| state.binders.get(&name)))
}
/// Checks `rhs` as part of the RHS of a macro definition and sets `valid` to false in case of
/// errors.
///
/// Arguments:
/// - `sess` is used to emit diagnostics and lints
/// - `node_id` is used to emit lints
/// - `rhs` is checked as part of a RHS
/// - `macros` is the stack of possible outer macros
/// - `binders` contains the binders of the associated LHS
/// - `ops` is the stack of Kleene operators from the RHS
/// - `valid` is set in case of errors
fn check_occurrences(
sess: &ParseSess,
node_id: NodeId,
rhs: &TokenTree,
macros: &Stack<'_, MacroState<'_>>,
binders: &Binders,
ops: &Stack<'_, KleeneToken>,
valid: &mut bool,
) {
match *rhs {
TokenTree::Token(..) => {}
TokenTree::MetaVarDecl(span, _name, _kind) => {
sess.span_diagnostic.span_bug(span, "unexpected MetaVarDecl in rhs")
}
TokenTree::MetaVar(span, name) => {
check_ops_is_prefix(sess, node_id, macros, binders, ops, span, name);
}
TokenTree::Delimited(_, ref del) => {
check_nested_occurrences(sess, node_id, &del.tts, macros, binders, ops, valid);
}
TokenTree::Sequence(_, ref seq) => {
let ops = ops.push(seq.kleene);
check_nested_occurrences(sess, node_id, &seq.tts, macros, binders, &ops, valid);
}
}
}
/// Represents the processed prefix of a nested macro.
#[derive(Clone, Copy, PartialEq, Eq)]
enum NestedMacroState {
/// Nothing that matches a nested macro definition was processed yet.
Empty,
/// The token `macro_rules` was processed.
MacroRules,
/// The tokens `macro_rules!` were processed.
MacroRulesNot,
/// The tokens `macro_rules!` followed by a name were processed. The name may be either directly
/// an identifier or a meta-variable (that hopefully would be instantiated by an identifier).
MacroRulesNotName,
/// The keyword `macro` was processed.
Macro,
/// The keyword `macro` followed by a name was processed.
MacroName,
/// The keyword `macro` followed by a name and a token delimited by parentheses was processed.
MacroNameParen,
}
/// Checks `tts` as part of the RHS of a macro definition, tries to recognize nested macro
/// definitions, and sets `valid` to false in case of errors.
///
/// Arguments:
/// - `sess` is used to emit diagnostics and lints
/// - `node_id` is used to emit lints
/// - `tts` is checked as part of a RHS and may contain macro definitions
/// - `macros` is the stack of possible outer macros
/// - `binders` contains the binders of the associated LHS
/// - `ops` is the stack of Kleene operators from the RHS
/// - `valid` is set in case of errors
fn check_nested_occurrences(
sess: &ParseSess,
node_id: NodeId,
tts: &[TokenTree],
macros: &Stack<'_, MacroState<'_>>,
binders: &Binders,
ops: &Stack<'_, KleeneToken>,
valid: &mut bool,
) {
let mut state = NestedMacroState::Empty;
let nested_macros = macros.push(MacroState { binders, ops: ops.into() });
let mut nested_binders = Binders::default();
for tt in tts {
match (state, tt) {
(
NestedMacroState::Empty,
&TokenTree::Token(Token { kind: TokenKind::Ident(name, false), .. }),
) => {
if name == sym::macro_rules {
state = NestedMacroState::MacroRules;
} else if name == kw::Macro {
state = NestedMacroState::Macro;
}
}
(
NestedMacroState::MacroRules,
&TokenTree::Token(Token { kind: TokenKind::Not, .. }),
) => {
state = NestedMacroState::MacroRulesNot;
}
(
NestedMacroState::MacroRulesNot,
&TokenTree::Token(Token { kind: TokenKind::Ident(..), .. }),
) => {
state = NestedMacroState::MacroRulesNotName;
}
(NestedMacroState::MacroRulesNot, &TokenTree::MetaVar(..)) => {
state = NestedMacroState::MacroRulesNotName;
// We check that the meta-variable is correctly used.
check_occurrences(sess, node_id, tt, macros, binders, ops, valid);
}
(NestedMacroState::MacroRulesNotName, &TokenTree::Delimited(_, ref del))
| (NestedMacroState::MacroName, &TokenTree::Delimited(_, ref del))
if del.delim == DelimToken::Brace =>
{
let legacy = state == NestedMacroState::MacroRulesNotName;
state = NestedMacroState::Empty;
let rest =
check_nested_macro(sess, node_id, legacy, &del.tts, &nested_macros, valid);
// If we did not check the whole macro definition, then check the rest as if outside
// the macro definition.
check_nested_occurrences(
sess,
node_id,
&del.tts[rest..],
macros,
binders,
ops,
valid,
);
}
(
NestedMacroState::Macro,
&TokenTree::Token(Token { kind: TokenKind::Ident(..), .. }),
) => {
state = NestedMacroState::MacroName;
}
(NestedMacroState::Macro, &TokenTree::MetaVar(..)) => {
state = NestedMacroState::MacroName;
// We check that the meta-variable is correctly used.
check_occurrences(sess, node_id, tt, macros, binders, ops, valid);
}
(NestedMacroState::MacroName, &TokenTree::Delimited(_, ref del))
if del.delim == DelimToken::Paren =>
{
state = NestedMacroState::MacroNameParen;
nested_binders = Binders::default();
check_binders(
sess,
node_id,
tt,
&nested_macros,
&mut nested_binders,
&Stack::Empty,
valid,
);
}
(NestedMacroState::MacroNameParen, &TokenTree::Delimited(_, ref del))
if del.delim == DelimToken::Brace =>
{
state = NestedMacroState::Empty;
check_occurrences(
sess,
node_id,
tt,
&nested_macros,
&nested_binders,
&Stack::Empty,
valid,
);
}
(_, ref tt) => {
state = NestedMacroState::Empty;
check_occurrences(sess, node_id, tt, macros, binders, ops, valid);
}
}
}
}
/// Checks the body of nested macro, returns where the check stopped, and sets `valid` to false in
/// case of errors.
///
/// The token trees are checked as long as they look like a list of (LHS) => {RHS} token trees. This
/// check is a best-effort to detect a macro definition. It returns the position in `tts` where we
/// stopped checking because we detected we were not in a macro definition anymore.
///
/// Arguments:
/// - `sess` is used to emit diagnostics and lints
/// - `node_id` is used to emit lints
/// - `legacy` specifies whether the macro is legacy
/// - `tts` is checked as a list of (LHS) => {RHS}
/// - `macros` is the stack of outer macros
/// - `valid` is set in case of errors
fn check_nested_macro(
sess: &ParseSess,
node_id: NodeId,
legacy: bool,
tts: &[TokenTree],
macros: &Stack<'_, MacroState<'_>>,
valid: &mut bool,
) -> usize {
let n = tts.len();
let mut i = 0;
let separator = if legacy { TokenKind::Semi } else { TokenKind::Comma };
loop {
// We expect 3 token trees: `(LHS) => {RHS}`. The separator is checked after.
if i + 2 >= n
|| !tts[i].is_delimited()
|| !tts[i + 1].is_token(&TokenKind::FatArrow)
|| !tts[i + 2].is_delimited()
{
break;
}
let lhs = &tts[i];
let rhs = &tts[i + 2];
let mut binders = Binders::default();
check_binders(sess, node_id, lhs, macros, &mut binders, &Stack::Empty, valid);
check_occurrences(sess, node_id, rhs, macros, &binders, &Stack::Empty, valid);
// Since the last semicolon is optional for legacy macros and decl_macro are not terminated,
// we increment our checked position by how many token trees we already checked (the 3
// above) before checking for the separator.
i += 3;
if i == n || !tts[i].is_token(&separator) {
break;
}
// We increment our checked position for the semicolon.
i += 1;
}
i
}
/// Checks that a meta-variable occurrence is valid.
///
/// Arguments:
/// - `sess` is used to emit diagnostics and lints
/// - `node_id` is used to emit lints
/// - `macros` is the stack of possible outer macros
/// - `binders` contains the binders of the associated LHS
/// - `ops` is the stack of Kleene operators from the RHS
/// - `span` is the span of the meta-variable to check
/// - `name` is the name of the meta-variable to check
fn check_ops_is_prefix(
sess: &ParseSess,
node_id: NodeId,
macros: &Stack<'_, MacroState<'_>>,
binders: &Binders,
ops: &Stack<'_, KleeneToken>,
span: Span,
name: Ident,
) {
let macros = macros.push(MacroState { binders, ops: ops.into() });
// Accumulates the stacks the operators of each state until (and including when) the
// meta-variable is found. The innermost stack is first.
let mut acc: SmallVec<[&SmallVec<[KleeneToken; 1]>; 1]> = SmallVec::new();
for state in &macros {
acc.push(&state.ops);
if let Some(binder) = state.binders.get(&name) {
// This variable concatenates the stack of operators from the RHS of the LHS where the
// meta-variable was defined to where it is used (in possibly nested macros). The
// outermost operator is first.
let mut occurrence_ops: SmallVec<[KleeneToken; 2]> = SmallVec::new();
// We need to iterate from the end to start with outermost stack.
for ops in acc.iter().rev() {
occurrence_ops.extend_from_slice(ops);
}
ops_is_prefix(sess, node_id, span, name, &binder.ops, &occurrence_ops);
return;
}
}
buffer_lint(sess, span.into(), node_id, &format!("unknown macro variable `{}`", name));
}
/// Returns whether `binder_ops` is a prefix of `occurrence_ops`.
///
/// The stack of Kleene operators of a meta-variable occurrence just needs to have the stack of
/// Kleene operators of its binder as a prefix.
///
/// Consider $i in the following example:
///
/// ( $( $i:ident = $($j:ident),+ );* ) => { $($( $i += $j; )+)* }
///
/// It occurs under the Kleene stack ["*", "+"] and is bound under ["*"] only.
///
/// Arguments:
/// - `sess` is used to emit diagnostics and lints
/// - `node_id` is used to emit lints
/// - `span` is the span of the meta-variable being check
/// - `name` is the name of the meta-variable being check
/// - `binder_ops` is the stack of Kleene operators for the binder
/// - `occurrence_ops` is the stack of Kleene operators for the occurrence
fn ops_is_prefix(
sess: &ParseSess,
node_id: NodeId,
span: Span,
name: Ident,
binder_ops: &[KleeneToken],
occurrence_ops: &[KleeneToken],
) {
for (i, binder) in binder_ops.iter().enumerate() {
if i >= occurrence_ops.len() {
let mut span = MultiSpan::from_span(span);
span.push_span_label(binder.span, "expected repetition".into());
let message = &format!("variable '{}' is still repeating at this depth", name);
buffer_lint(sess, span, node_id, message);
return;
}
let occurrence = &occurrence_ops[i];
if occurrence.op != binder.op {
let mut span = MultiSpan::from_span(span);
span.push_span_label(binder.span, "expected repetition".into());
span.push_span_label(occurrence.span, "conflicting repetition".into());
let message = "meta-variable repeats with different Kleene operator";
buffer_lint(sess, span, node_id, message);
return;
}
}
}
fn buffer_lint(sess: &ParseSess, span: MultiSpan, node_id: NodeId, message: &str) {
sess.buffer_lint(BufferedEarlyLintId::MetaVariableMisuse, span, node_id, message);
}

View File

@ -557,8 +557,8 @@ fn inner_parse_loop<'root, 'tt>(
// implicitly disallowing OneOrMore from having 0 matches here. Thus, that will
// result in a "no rules expected token" error by virtue of this matcher not
// working.
if seq.op == quoted::KleeneOp::ZeroOrMore
|| seq.op == quoted::KleeneOp::ZeroOrOne
if seq.kleene.op == quoted::KleeneOp::ZeroOrMore
|| seq.kleene.op == quoted::KleeneOp::ZeroOrOne
{
let mut new_item = item.clone();
new_item.match_cur += seq.num_captures;
@ -573,7 +573,7 @@ fn inner_parse_loop<'root, 'tt>(
cur_items.push(MatcherPosHandle::Box(Box::new(MatcherPos {
stack: smallvec![],
sep: seq.separator.clone(),
seq_op: Some(seq.op),
seq_op: Some(seq.kleene.op),
idx: 0,
matches,
match_lo: item.match_cur,

View File

@ -2,6 +2,7 @@ use crate::edition::Edition;
use crate::ext::base::{DummyResult, ExtCtxt, MacResult, TTMacroExpander};
use crate::ext::base::{SyntaxExtension, SyntaxExtensionKind};
use crate::ext::expand::{AstFragment, AstFragmentKind};
use crate::ext::tt::macro_check;
use crate::ext::tt::macro_parser::{parse, parse_failure_msg};
use crate::ext::tt::macro_parser::{Error, Failure, Success};
use crate::ext::tt::macro_parser::{MatchedNonterminal, MatchedSeq};
@ -18,7 +19,7 @@ use crate::{ast, attr, attr::TransparencyError};
use errors::FatalError;
use log::debug;
use syntax_pos::{symbol::Ident, Span};
use syntax_pos::Span;
use rustc_data_structures::fx::FxHashMap;
use std::borrow::Cow;
@ -273,7 +274,7 @@ pub fn compile(
if body.legacy { token::Semi } else { token::Comma },
def.span,
)),
op: quoted::KleeneOp::OneOrMore,
kleene: quoted::KleeneToken::new(quoted::KleeneOp::OneOrMore, def.span),
num_captures: 2,
}),
),
@ -283,7 +284,7 @@ pub fn compile(
Lrc::new(quoted::SequenceRepetition {
tts: vec![quoted::TokenTree::token(token::Semi, def.span)],
separator: None,
op: quoted::KleeneOp::ZeroOrMore,
kleene: quoted::KleeneToken::new(quoted::KleeneOp::ZeroOrMore, def.span),
num_captures: 0,
}),
),
@ -366,14 +367,12 @@ pub fn compile(
// don't abort iteration early, so that errors for multiple lhses can be reported
for lhs in &lhses {
valid &= check_lhs_no_empty_seq(sess, slice::from_ref(lhs));
valid &= check_lhs_duplicate_matcher_bindings(
sess,
slice::from_ref(lhs),
&mut FxHashMap::default(),
def.id,
);
}
// We use CRATE_NODE_ID instead of `def.id` otherwise we may emit buffered lints for a node id
// that is not lint-checked and trigger the "failed to process buffered lint here" bug.
valid &= macro_check::check_meta_variables(sess, ast::CRATE_NODE_ID, def.span, &lhses, &rhses);
let expander: Box<_> =
Box::new(MacroRulesMacroExpander { name: def.ident, span: def.span, lhses, rhses, valid });
@ -477,8 +476,8 @@ fn check_lhs_no_empty_seq(sess: &ParseSess, tts: &[quoted::TokenTree]) -> bool {
&& seq.tts.iter().all(|seq_tt| match *seq_tt {
TokenTree::MetaVarDecl(_, _, id) => id.name == sym::vis,
TokenTree::Sequence(_, ref sub_seq) => {
sub_seq.op == quoted::KleeneOp::ZeroOrMore
|| sub_seq.op == quoted::KleeneOp::ZeroOrOne
sub_seq.kleene.op == quoted::KleeneOp::ZeroOrMore
|| sub_seq.kleene.op == quoted::KleeneOp::ZeroOrOne
}
_ => false,
})
@ -497,45 +496,6 @@ fn check_lhs_no_empty_seq(sess: &ParseSess, tts: &[quoted::TokenTree]) -> bool {
true
}
/// Check that the LHS contains no duplicate matcher bindings. e.g. `$a:expr, $a:expr` would be
/// illegal, since it would be ambiguous which `$a` to use if we ever needed to.
fn check_lhs_duplicate_matcher_bindings(
sess: &ParseSess,
tts: &[quoted::TokenTree],
metavar_names: &mut FxHashMap<Ident, Span>,
node_id: ast::NodeId,
) -> bool {
use self::quoted::TokenTree;
for tt in tts {
match *tt {
TokenTree::MetaVarDecl(span, name, _kind) => {
if let Some(&prev_span) = metavar_names.get(&name) {
sess.span_diagnostic
.struct_span_err(span, "duplicate matcher binding")
.span_note(prev_span, "previous declaration was here")
.emit();
return false;
} else {
metavar_names.insert(name, span);
}
}
TokenTree::Delimited(_, ref del) => {
if !check_lhs_duplicate_matcher_bindings(sess, &del.tts, metavar_names, node_id) {
return false;
}
}
TokenTree::Sequence(_, ref seq) => {
if !check_lhs_duplicate_matcher_bindings(sess, &seq.tts, metavar_names, node_id) {
return false;
}
}
_ => {}
}
}
true
}
fn check_rhs(sess: &ParseSess, rhs: &quoted::TokenTree) -> bool {
match *rhs {
quoted::TokenTree::Delimited(..) => return true,
@ -628,8 +588,8 @@ impl FirstSets {
// Reverse scan: Sequence comes before `first`.
if subfirst.maybe_empty
|| seq_rep.op == quoted::KleeneOp::ZeroOrMore
|| seq_rep.op == quoted::KleeneOp::ZeroOrOne
|| seq_rep.kleene.op == quoted::KleeneOp::ZeroOrMore
|| seq_rep.kleene.op == quoted::KleeneOp::ZeroOrOne
{
// If sequence is potentially empty, then
// union them (preserving first emptiness).
@ -677,8 +637,8 @@ impl FirstSets {
assert!(first.maybe_empty);
first.add_all(subfirst);
if subfirst.maybe_empty
|| seq_rep.op == quoted::KleeneOp::ZeroOrMore
|| seq_rep.op == quoted::KleeneOp::ZeroOrOne
|| seq_rep.kleene.op == quoted::KleeneOp::ZeroOrMore
|| seq_rep.kleene.op == quoted::KleeneOp::ZeroOrOne
{
// continue scanning for more first
// tokens, but also make sure we

View File

@ -50,11 +50,23 @@ pub struct SequenceRepetition {
/// The optional separator
pub separator: Option<Token>,
/// Whether the sequence can be repeated zero (*), or one or more times (+)
pub op: KleeneOp,
pub kleene: KleeneToken,
/// The number of `Match`s that appear in the sequence (and subsequences)
pub num_captures: usize,
}
#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Debug, Copy)]
pub struct KleeneToken {
pub span: Span,
pub op: KleeneOp,
}
impl KleeneToken {
pub fn new(op: KleeneOp, span: Span) -> KleeneToken {
KleeneToken { span, op }
}
}
/// A Kleene-style [repetition operator](http://en.wikipedia.org/wiki/Kleene_star)
/// for token sequences.
#[derive(Clone, PartialEq, RustcEncodable, RustcDecodable, Hash, Debug, Copy)]
@ -111,6 +123,22 @@ impl TokenTree {
}
}
/// Returns `true` if the given token tree is delimited.
pub fn is_delimited(&self) -> bool {
match *self {
TokenTree::Delimited(..) => true,
_ => false,
}
}
/// Returns `true` if the given token tree is a token of the given kind.
pub fn is_token(&self, expected_kind: &TokenKind) -> bool {
match self {
TokenTree::Token(Token { kind: actual_kind, .. }) => actual_kind == expected_kind,
_ => false,
}
}
/// Gets the `index`-th sub-token-tree. This only makes sense for delimited trees and sequences.
pub fn get_tt(&self, index: usize) -> TokenTree {
match (self, index) {
@ -273,7 +301,7 @@ fn parse_tree(
macro_node_id,
);
// Get the Kleene operator and optional separator
let (separator, op) = parse_sep_and_kleene_op(trees, span.entire(), sess);
let (separator, kleene) = parse_sep_and_kleene_op(trees, span.entire(), sess);
// Count the number of captured "names" (i.e., named metavars)
let name_captures = macro_parser::count_names(&sequence);
TokenTree::Sequence(
@ -281,7 +309,7 @@ fn parse_tree(
Lrc::new(SequenceRepetition {
tts: sequence,
separator,
op,
kleene,
num_captures: name_captures,
}),
)
@ -379,16 +407,16 @@ fn parse_sep_and_kleene_op(
input: &mut Peekable<impl Iterator<Item = tokenstream::TokenTree>>,
span: Span,
sess: &ParseSess,
) -> (Option<Token>, KleeneOp) {
) -> (Option<Token>, KleeneToken) {
// We basically look at two token trees here, denoted as #1 and #2 below
let span = match parse_kleene_op(input, span) {
// #1 is a `?`, `+`, or `*` KleeneOp
Ok(Ok((op, _))) => return (None, op),
Ok(Ok((op, span))) => return (None, KleeneToken::new(op, span)),
// #1 is a separator followed by #2, a KleeneOp
Ok(Err(token)) => match parse_kleene_op(input, token.span) {
// #2 is the `?` Kleene op, which does not take a separator (error)
Ok(Ok((KleeneOp::ZeroOrOne, _))) => {
Ok(Ok((KleeneOp::ZeroOrOne, span))) => {
// Error!
sess.span_diagnostic.span_err(
token.span,
@ -396,11 +424,11 @@ fn parse_sep_and_kleene_op(
);
// Return a dummy
return (None, KleeneOp::ZeroOrMore);
return (None, KleeneToken::new(KleeneOp::ZeroOrMore, span));
}
// #2 is a KleeneOp :D
Ok(Ok((op, _))) => return (Some(token), op),
Ok(Ok((op, span))) => return (Some(token), KleeneToken::new(op, span)),
// #2 is a random token or not a token at all :(
Ok(Err(Token { span, .. })) | Err(span) => span,
@ -414,5 +442,5 @@ fn parse_sep_and_kleene_op(
sess.span_diagnostic.span_err(span, "expected one of: `*`, `+`, or `?`");
// Return a dummy
(None, KleeneOp::ZeroOrMore)
(None, KleeneToken::new(KleeneOp::ZeroOrMore, span))
}

View File

@ -183,7 +183,7 @@ pub fn transcribe(
// Is the repetition empty?
if len == 0 {
if seq.op == quoted::KleeneOp::OneOrMore {
if seq.kleene.op == quoted::KleeneOp::OneOrMore {
// FIXME: this really ought to be caught at macro definition
// time... It happens when the Kleene operator in the matcher and
// the body for the same meta-variable do not match.

View File

@ -174,6 +174,7 @@ pub mod ext {
pub mod tt {
pub mod transcribe;
pub mod macro_check;
pub mod macro_parser;
pub mod macro_rules;
pub mod quoted;

View File

@ -0,0 +1,34 @@
// run-pass
#![deny(meta_variable_misuse)]
macro_rules! foo {
($($m:ident $($f:ident $v:tt)+),*) => {
$($(macro_rules! $f { () => { $v } })+)*
$(macro_rules! $m { () => { $(fn $f() -> i32 { $v })+ } })*
}
}
foo!(m a 1 b 2, n c 3);
m!();
n!();
macro_rules! no_shadow {
($x:tt) => { macro_rules! bar { ($x:tt) => { 42 }; } };
}
no_shadow!(z);
macro_rules! make_plus {
($n: ident $x:expr) => { macro_rules! $n { ($y:expr) => { $x + $y }; } };
}
make_plus!(add3 3);
fn main() {
assert_eq!(a!(), 1);
assert_eq!(b!(), 2);
assert_eq!(c!(), 3);
assert_eq!(a(), 1);
assert_eq!(b(), 2);
assert_eq!(c(), 3);
assert_eq!(bar!(z:tt), 42);
assert_eq!(add3!(9), 12);
}

View File

@ -0,0 +1,30 @@
#![deny(meta_variable_misuse)]
macro_rules! foo {
() => {};
( $( $i:ident = $($j:ident),+ );* ) => { $( $( $i = $j; )* )* };
//~^ ERROR meta-variable repeats with
( $( $($j:ident),+ );* ) => { $( $( $j; )+ )+ }; //~ERROR meta-variable repeats with
}
macro_rules! bar {
() => {};
(test) => {
macro_rules! nested {
() => {};
( $( $i:ident = $($j:ident),+ );* ) => { $( $( $i = $j; )* )* };
//~^ ERROR meta-variable repeats with
( $( $($j:ident),+ );* ) => { $( $( $j; )+ )+ }; //~ERROR meta-variable repeats with
}
};
( $( $i:ident = $($j:ident),+ );* ) => {
$(macro_rules! $i {
() => { 0 $( + $j )* }; //~ ERROR meta-variable repeats with
})*
};
}
fn main() {
foo!();
bar!();
}

View File

@ -0,0 +1,45 @@
error: meta-variable repeats with different Kleene operator
--> $DIR/issue-61053-different-kleene.rs:5:57
|
LL | ( $( $i:ident = $($j:ident),+ );* ) => { $( $( $i = $j; )* )* };
| - expected repetition ^^ - conflicting repetition
|
note: lint level defined here
--> $DIR/issue-61053-different-kleene.rs:1:9
|
LL | #![deny(meta_variable_misuse)]
| ^^^^^^^^^^^^^^^^^^^^
error: meta-variable repeats with different Kleene operator
--> $DIR/issue-61053-different-kleene.rs:7:41
|
LL | ( $( $($j:ident),+ );* ) => { $( $( $j; )+ )+ };
| - ^^ - conflicting repetition
| |
| expected repetition
error: meta-variable repeats with different Kleene operator
--> $DIR/issue-61053-different-kleene.rs:15:65
|
LL | ( $( $i:ident = $($j:ident),+ );* ) => { $( $( $i = $j; )* )* };
| - expected repetition ^^ - conflicting repetition
error: meta-variable repeats with different Kleene operator
--> $DIR/issue-61053-different-kleene.rs:17:49
|
LL | ( $( $($j:ident),+ );* ) => { $( $( $j; )+ )+ };
| - ^^ - conflicting repetition
| |
| expected repetition
error: meta-variable repeats with different Kleene operator
--> $DIR/issue-61053-different-kleene.rs:22:28
|
LL | ( $( $i:ident = $($j:ident),+ );* ) => {
| - expected repetition
LL | $(macro_rules! $i {
LL | () => { 0 $( + $j )* };
| ^^ - conflicting repetition
error: aborting due to 5 previous errors

View File

@ -0,0 +1,14 @@
#![deny(meta_variable_misuse)]
macro_rules! foo {
() => {};
(error) => {
macro_rules! bar {
($x:tt $x:tt) => { $x }; //~ ERROR duplicate matcher binding
}
};
}
fn main() {
foo!();
}

View File

@ -0,0 +1,16 @@
error: duplicate matcher binding
--> $DIR/issue-61053-duplicate-binder.rs:7:20
|
LL | ($x:tt $x:tt) => { $x };
| -- ^^
| |
| previous declaration
|
note: lint level defined here
--> $DIR/issue-61053-duplicate-binder.rs:1:9
|
LL | #![deny(meta_variable_misuse)]
| ^^^^^^^^^^^^^^^^^^^^
error: aborting due to previous error

View File

@ -0,0 +1,28 @@
#![deny(meta_variable_misuse)]
macro_rules! foo {
() => {};
($( $i:ident = $($j:ident),+ );*) => { $( $i = $j; )* };
//~^ ERROR variable 'j' is still repeating
}
macro_rules! bar {
() => {};
(test) => {
macro_rules! nested {
() => {};
($( $i:ident = $($j:ident),+ );*) => { $( $i = $j; )* };
//~^ ERROR variable 'j' is still repeating
}
};
( $( $i:ident = $($j:ident),+ );* ) => {
$(macro_rules! $i {
() => { $j }; //~ ERROR variable 'j' is still repeating
})*
};
}
fn main() {
foo!();
bar!();
}

View File

@ -0,0 +1,33 @@
error: variable 'j' is still repeating at this depth
--> $DIR/issue-61053-missing-repetition.rs:5:52
|
LL | ($( $i:ident = $($j:ident),+ );*) => { $( $i = $j; )* };
| - ^^
| |
| expected repetition
|
note: lint level defined here
--> $DIR/issue-61053-missing-repetition.rs:1:9
|
LL | #![deny(meta_variable_misuse)]
| ^^^^^^^^^^^^^^^^^^^^
error: variable 'j' is still repeating at this depth
--> $DIR/issue-61053-missing-repetition.rs:14:60
|
LL | ($( $i:ident = $($j:ident),+ );*) => { $( $i = $j; )* };
| - ^^
| |
| expected repetition
error: variable 'j' is still repeating at this depth
--> $DIR/issue-61053-missing-repetition.rs:20:21
|
LL | ( $( $i:ident = $($j:ident),+ );* ) => {
| - expected repetition
LL | $(macro_rules! $i {
LL | () => { $j };
| ^^
error: aborting due to 3 previous errors

View File

@ -0,0 +1,28 @@
#![deny(meta_variable_misuse)]
macro_rules! foo {
() => {};
($( $i:ident = $($j:ident),+ );*) => { $( $( $i = $k; )+ )* };
//~^ ERROR unknown macro variable
}
macro_rules! bar {
() => {};
(test) => {
macro_rules! nested {
() => {};
($( $i:ident = $($j:ident),+ );*) => { $( $( $i = $k; )+ )* };
//~^ ERROR unknown macro variable
}
};
( $( $i:ident = $($j:ident),+ );* ) => {
$(macro_rules! $i {
() => { $( $i = $k)+ }; //~ ERROR unknown macro variable
})*
};
}
fn main() {
foo!();
bar!();
}

View File

@ -0,0 +1,26 @@
error: unknown macro variable `k`
--> $DIR/issue-61053-unbound.rs:5:55
|
LL | ($( $i:ident = $($j:ident),+ );*) => { $( $( $i = $k; )+ )* };
| ^^
|
note: lint level defined here
--> $DIR/issue-61053-unbound.rs:1:9
|
LL | #![deny(meta_variable_misuse)]
| ^^^^^^^^^^^^^^^^^^^^
error: unknown macro variable `k`
--> $DIR/issue-61053-unbound.rs:14:63
|
LL | ($( $i:ident = $($j:ident),+ );*) => { $( $( $i = $k; )+ )* };
| ^^
error: unknown macro variable `k`
--> $DIR/issue-61053-unbound.rs:20:29
|
LL | () => { $( $i = $k)+ };
| ^^
error: aborting due to 3 previous errors