Add -Zteach documentation

Add extra inline documentation to E0019, E0016, E0013, E0396, E0017,
E0018, E0010, E0022, E0030, E0029, E0033, E0026 and E0027.
This commit is contained in:
Esteban Küber 2018-01-28 21:44:04 -08:00
parent 29c8276cee
commit e87e0bcc0e
4 changed files with 229 additions and 55 deletions

View File

@ -175,6 +175,10 @@ fn configure_main(this: &mut EntryContext) {
err.emit();
this.session.abort_if_errors();
} else {
if this.session.teach(&err.get_code().unwrap()) {
err.note("If you don't know the basics of Rust, you can go look to the Rust Book \
to get started: https://doc.rust-lang.org/book/");
}
err.emit();
}
}

View File

@ -170,8 +170,20 @@ impl<'a, 'tcx> Qualifier<'a, 'tcx, 'tcx> {
fn not_const(&mut self) {
self.add(Qualif::NOT_CONST);
if self.mode != Mode::Fn {
span_err!(self.tcx.sess, self.span, E0019,
"{} contains unimplemented expression type", self.mode);
let mut err = struct_span_err!(
self.tcx.sess,
self.span,
E0019,
"{} contains unimplemented expression type",
self.mode
);
if self.tcx.sess.teach(&err.get_code().unwrap()) {
err.note("A function call isn't allowed in the const's initialization expression \
because the expression's value must be known at compile-time.");
err.note("Remember: you can't use a function call inside a const's initialization \
expression! However, you can use it anywhere else.");
}
err.emit();
}
}
@ -179,9 +191,19 @@ impl<'a, 'tcx> Qualifier<'a, 'tcx, 'tcx> {
fn statement_like(&mut self) {
self.add(Qualif::NOT_CONST);
if self.mode != Mode::Fn {
span_err!(self.tcx.sess, self.span, E0016,
"blocks in {}s are limited to items and tail expressions",
self.mode);
let mut err = struct_span_err!(
self.tcx.sess,
self.span,
E0016,
"blocks in {}s are limited to items and tail expressions",
self.mode
);
if self.tcx.sess.teach(&err.get_code().unwrap()) {
err.note("Blocks in constants may only contain items (such as constant, function \
definition, etc...) and a tail expression.");
err.help("To avoid it, you have to replace the non-item object.");
}
err.emit();
}
}
@ -474,9 +496,19 @@ impl<'a, 'tcx> Visitor<'tcx> for Qualifier<'a, 'tcx, 'tcx> {
}
if self.mode == Mode::Const || self.mode == Mode::ConstFn {
span_err!(self.tcx.sess, self.span, E0013,
"{}s cannot refer to statics, use \
a constant instead", self.mode);
let mut err = struct_span_err!(self.tcx.sess, self.span, E0013,
"{}s cannot refer to statics, use \
a constant instead", self.mode);
if self.tcx.sess.teach(&err.get_code().unwrap()) {
err.note(
"Static and const variables can refer to other const variables. But a \
const variable cannot refer to a static variable."
);
err.help(
"To fix this, the value can be extracted as a const and then used."
);
}
err.emit()
}
}
Place::Projection(ref proj) => {
@ -497,13 +529,25 @@ impl<'a, 'tcx> Visitor<'tcx> for Qualifier<'a, 'tcx, 'tcx> {
if let ty::TyRawPtr(_) = base_ty.sty {
this.add(Qualif::NOT_CONST);
if this.mode != Mode::Fn {
struct_span_err!(this.tcx.sess,
this.span, E0396,
let mut err = struct_span_err!(
this.tcx.sess,
this.span,
E0396,
"raw pointers cannot be dereferenced in {}s",
this.mode)
.span_label(this.span,
"dereference of raw pointer in constant")
.emit();
this.mode
);
err.span_label(this.span,
"dereference of raw pointer in constant");
if this.tcx.sess.teach(&err.get_code().unwrap()) {
err.note(
"The value behind a raw pointer can't be determined \
at compile-time (or even link-time), which means it \
can't be used in a constant expression."
);
err.help("A possible fix is to dereference your pointer \
at some point in run-time.");
}
err.emit();
}
}
}
@ -622,12 +666,22 @@ impl<'a, 'tcx> Visitor<'tcx> for Qualifier<'a, 'tcx, 'tcx> {
if !allow {
self.add(Qualif::NOT_CONST);
if self.mode != Mode::Fn {
struct_span_err!(self.tcx.sess, self.span, E0017,
"references in {}s may only refer \
to immutable values", self.mode)
.span_label(self.span, format!("{}s require immutable values",
self.mode))
.emit();
let mut err = struct_span_err!(self.tcx.sess, self.span, E0017,
"references in {}s may only refer \
to immutable values", self.mode);
err.span_label(self.span, format!("{}s require immutable values",
self.mode));
if self.tcx.sess.teach(&err.get_code().unwrap()) {
err.note("References in statics and constants may only refer to \
immutable values.\n\n\
Statics are shared everywhere, and if they refer to \
mutable data one might violate memory safety since \
holding multiple mutable references to shared data is \
not allowed.\n\n\
If you really want global mutable state, try using \
static mut or a global UnsafeCell.");
}
err.emit();
}
}
} else {
@ -668,9 +722,42 @@ impl<'a, 'tcx> Visitor<'tcx> for Qualifier<'a, 'tcx, 'tcx> {
(CastTy::FnPtr, CastTy::Int(_)) => {
self.add(Qualif::NOT_CONST);
if self.mode != Mode::Fn {
span_err!(self.tcx.sess, self.span, E0018,
"raw pointers cannot be cast to integers in {}s",
self.mode);
let mut err = struct_span_err!(
self.tcx.sess,
self.span,
E0018,
"raw pointers cannot be cast to integers in {}s",
self.mode
);
if self.tcx.sess.teach(&err.get_code().unwrap()) {
err.note("\
The value of static and constant integers must be known at compile time. You can't cast a pointer \
to an integer because the address of a pointer can vary.
For example, if you write:
```
static MY_STATIC: u32 = 42;
static MY_STATIC_ADDR: usize = &MY_STATIC as *const _ as usize;
static WHAT: usize = (MY_STATIC_ADDR^17) + MY_STATIC_ADDR;
```
Then `MY_STATIC_ADDR` would contain the address of `MY_STATIC`. However, the address can change \
when the program is linked, as well as change between different executions due to ASLR, and many \
linkers would not be able to calculate the value of `WHAT`.
On the other hand, static and constant pointers can point either to a known numeric address or to \
the address of a symbol.
```
static MY_STATIC: u32 = 42;
static MY_STATIC_ADDR: &'static u32 = &MY_STATIC;
const CONST_ADDR: *const u8 = 0x5f3759df as *const u8;
```
This does not pose a problem by itself because they can't be accessed directly.");
}
err.emit();
}
}
_ => {}
@ -701,10 +788,18 @@ impl<'a, 'tcx> Visitor<'tcx> for Qualifier<'a, 'tcx, 'tcx> {
Rvalue::NullaryOp(NullOp::Box, _) => {
self.add(Qualif::NOT_CONST);
if self.mode != Mode::Fn {
struct_span_err!(self.tcx.sess, self.span, E0010,
"allocations are not allowed in {}s", self.mode)
.span_label(self.span, format!("allocation not allowed in {}s", self.mode))
.emit();
let mut err = struct_span_err!(self.tcx.sess, self.span, E0010,
"allocations are not allowed in {}s", self.mode);
err.span_label(self.span, format!("allocation not allowed in {}s", self.mode));
if self.tcx.sess.teach(&err.get_code().unwrap()) {
err.note(
"The value of statics and constants must be known at compile time, \
and they live for the entire lifetime of a program. Creating a boxed \
value allocates memory on the heap at runtime, and therefore cannot \
be done at compile time."
);
}
err.emit();
}
}
@ -930,9 +1025,22 @@ impl<'a, 'tcx> Visitor<'tcx> for Qualifier<'a, 'tcx, 'tcx> {
// Avoid a generic error for other uses of arguments.
if self.qualif.intersects(Qualif::FN_ARGUMENT) {
let decl = &self.mir.local_decls[index];
span_err!(self.tcx.sess, decl.source_info.span, E0022,
"arguments of constant functions can only \
be immutable by-value bindings");
let mut err = struct_span_err!(
self.tcx.sess,
decl.source_info.span,
E0022,
"arguments of constant functions can only be immutable by-value bindings"
);
if self.tcx.sess.teach(&err.get_code().unwrap()) {
err.note("Constant functions are not allowed to mutate anything. Thus, \
binding to an argument with a mutable pattern is not allowed.");
err.note("Remove any mutable bindings from the argument list to fix this \
error. In case you need to mutate the argument, try lazily \
initializing a global variable instead of using a const fn, or \
refactoring the code to a functional style to avoid mutation if \
possible.");
}
err.emit();
return;
}
}

View File

@ -237,10 +237,20 @@ impl<'a, 'tcx> Visitor<'tcx> for CheckCrateVisitor<'a, 'tcx> {
Ok(Ordering::Less) |
Ok(Ordering::Equal) => {}
Ok(Ordering::Greater) => {
struct_span_err!(self.tcx.sess, start.span, E0030,
"lower range bound must be less than or equal to upper")
.span_label(start.span, "lower bound larger than upper bound")
.emit();
let mut err = struct_span_err!(
self.tcx.sess,
start.span,
E0030,
"lower range bound must be less than or equal to upper"
);
err.span_label(start.span, "lower bound larger than upper bound");
if self.tcx.sess.teach(&err.get_code().unwrap()) {
err.note("When matching against a range, the compiler verifies that \
the range is non-empty. Range patterns include both \
end-points, so this is equivalent to requiring the start of \
the range to be less than or equal to the end of the range.");
}
err.emit();
}
Err(ErrorReported) => {}
}

View File

@ -214,12 +214,25 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
end.span
};
struct_span_err!(tcx.sess, span, E0029,
"only char and numeric types are allowed in range patterns")
.span_label(span, "ranges require char or numeric types")
.note(&format!("start type: {}", self.ty_to_string(lhs_ty)))
.note(&format!("end type: {}", self.ty_to_string(rhs_ty)))
.emit();
let mut err = struct_span_err!(
tcx.sess,
span,
E0029,
"only char and numeric types are allowed in range patterns"
);
err.span_label(span, "ranges require char or numeric types");
err.note(&format!("start type: {}", self.ty_to_string(lhs_ty)));
err.note(&format!("end type: {}", self.ty_to_string(rhs_ty)));
if tcx.sess.teach(&err.get_code().unwrap()) {
err.note(
"In a match expression, only numbers and characters can be matched \
against a range. This is because the compiler checks that the range \
is non-empty at compile-time, and is unable to evaluate arbitrary \
comparison functions. If you want to capture values of an orderable \
type between two end-points, you can use a guard."
);
}
err.emit();
return;
}
@ -505,10 +518,25 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
// This is "x = SomeTrait" being reduced from
// "let &x = &SomeTrait" or "let box x = Box<SomeTrait>", an error.
let type_str = self.ty_to_string(expected);
struct_span_err!(self.tcx.sess, span, E0033,
"type `{}` cannot be dereferenced", type_str)
.span_label(span, format!("type `{}` cannot be dereferenced", type_str))
.emit();
let mut err = struct_span_err!(
self.tcx.sess,
span,
E0033,
"type `{}` cannot be dereferenced",
type_str
);
err.span_label(span, format!("type `{}` cannot be dereferenced", type_str));
if self.tcx.sess.teach(&err.get_code().unwrap()) {
err.note("\
This error indicates that a pointer to a trait type cannot be implicitly dereferenced by a \
pattern. Every trait defines a type, but because the size of trait implementors isn't fixed, \
this type has no compile-time size. Therefore, all accesses to trait types must be through \
pointers. If you encounter this error you should try to avoid dereferencing the pointer.
You can read more about trait objects in the Trait Objects section of the Reference: \
https://doc.rust-lang.org/reference/types.html#trait-objects");
}
err.emit();
return false
}
}
@ -881,17 +909,33 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
self.field_ty(span, f, substs)
})
.unwrap_or_else(|| {
struct_span_err!(tcx.sess, span, E0026,
"{} `{}` does not have a field named `{}`",
kind_name,
tcx.item_path_str(variant.did),
field.name)
.span_label(span,
format!("{} `{}` does not have field `{}`",
kind_name,
tcx.item_path_str(variant.did),
field.name))
.emit();
let mut err = struct_span_err!(
tcx.sess,
span,
E0026,
"{} `{}` does not have a field named `{}`",
kind_name,
tcx.item_path_str(variant.did),
field.name
);
err.span_label(span,
format!("{} `{}` does not have field `{}`",
kind_name,
tcx.item_path_str(variant.did),
field.name));
if tcx.sess.teach(&err.get_code().unwrap()) {
err.note(
"This error indicates that a struct pattern attempted to \
extract a non-existent field from a struct. Struct fields \
are identified by the name used before the colon : so struct \
patterns should resemble the declaration of the struct type \
being matched.\n\n\
If you are using shorthand field patterns but want to refer \
to the struct field by a different name, you should rename \
it explicitly."
);
}
err.emit();
tcx.types.err
})
@ -927,6 +971,14 @@ impl<'a, 'gcx, 'tcx> FnCtxt<'a, 'gcx, 'tcx> {
if variant.ctor_kind == CtorKind::Fn {
diag.note("trying to match a tuple variant with a struct variant pattern");
}
if tcx.sess.teach(&diag.get_code().unwrap()) {
diag.note(
"This error indicates that a pattern for a struct fails to specify a \
sub-pattern for every one of the struct's fields. Ensure that each field \
from the struct's definition is mentioned in the pattern, or use `..` to \
ignore unwanted fields."
);
}
diag.emit();
}
}