Improve align_offset at opt-level <= 1

At opt-level <= 1, the methods such as `wrapping_mul` are not being
inlined, causing significant bloating and slowdowns of the
implementation at these optimisation levels.

With use of these intrinsics, the codegen of this function at
-Copt_level=1 is the same as it is at -Copt_level=3.
This commit is contained in:
Simonas Kazlauskas 2020-08-16 16:59:43 +03:00
parent 97ba0c7171
commit e7271da69a

View File

@ -1166,6 +1166,10 @@ pub unsafe fn write_volatile<T>(dst: *mut T, src: T) {
/// Any questions go to @nagisa.
#[lang = "align_offset"]
pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
// FIXME(#75598): Direct use of these intrinsics improves codegen significantly at opt-level <=
// 1, where the method versions of these operations are not inlined.
use intrinsics::{unchecked_shl, unchecked_shr, unchecked_sub, wrapping_mul, wrapping_sub};
/// Calculate multiplicative modular inverse of `x` modulo `m`.
///
/// This implementation is tailored for align_offset and has following preconditions:
@ -1175,7 +1179,7 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
///
/// Implementation of this function shall not panic. Ever.
#[inline]
fn mod_inv(x: usize, m: usize) -> usize {
unsafe fn mod_inv(x: usize, m: usize) -> usize {
/// Multiplicative modular inverse table modulo 2⁴ = 16.
///
/// Note, that this table does not contain values where inverse does not exist (i.e., for
@ -1187,8 +1191,10 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
const INV_TABLE_MOD_SQUARED: usize = INV_TABLE_MOD * INV_TABLE_MOD;
let table_inverse = INV_TABLE_MOD_16[(x & (INV_TABLE_MOD - 1)) >> 1] as usize;
// SAFETY: `m` is required to be a power-of-two, hence non-zero.
let m_minus_one = unsafe { unchecked_sub(m, 1) };
if m <= INV_TABLE_MOD {
table_inverse & (m - 1)
table_inverse & m_minus_one
} else {
// We iterate "up" using the following formula:
//
@ -1204,17 +1210,18 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
// uses e.g., subtraction `mod n`. It is entirely fine to do them `mod
// usize::MAX` instead, because we take the result `mod n` at the end
// anyway.
inverse = inverse.wrapping_mul(2usize.wrapping_sub(x.wrapping_mul(inverse)));
inverse = wrapping_mul(inverse, wrapping_sub(2usize, wrapping_mul(x, inverse)));
if going_mod >= m {
return inverse & (m - 1);
return inverse & m_minus_one;
}
going_mod = going_mod.wrapping_mul(going_mod);
going_mod = wrapping_mul(going_mod, going_mod);
}
}
}
let stride = mem::size_of::<T>();
let a_minus_one = a.wrapping_sub(1);
// SAFETY: `a` is a power-of-two, hence non-zero.
let a_minus_one = unsafe { unchecked_sub(a, 1) };
let pmoda = p as usize & a_minus_one;
if pmoda == 0 {
@ -1228,16 +1235,18 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
// elements will ever align the pointer.
!0
} else {
a.wrapping_sub(pmoda)
wrapping_sub(a, pmoda)
};
}
let smoda = stride & a_minus_one;
// SAFETY: a is power-of-two so cannot be 0. stride = 0 is handled above.
// SAFETY: a is power-of-two hence non-zero. stride == 0 case is handled above.
let gcdpow = unsafe { intrinsics::cttz_nonzero(stride).min(intrinsics::cttz_nonzero(a)) };
let gcd = 1usize << gcdpow;
// SAFETY: gcdpow has an upper-bound thats at most the number of bits in an usize.
let gcd = unsafe { unchecked_shl(1usize, gcdpow) };
if p as usize & (gcd.wrapping_sub(1)) == 0 {
// SAFETY: gcd is always greater or equal to 1.
if p as usize & unsafe { unchecked_sub(gcd, 1) } == 0 {
// This branch solves for the following linear congruence equation:
//
// ` p + so = 0 mod a `
@ -1245,8 +1254,8 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
// `p` here is the pointer value, `s` - stride of `T`, `o` offset in `T`s, and `a` - the
// requested alignment.
//
// With `g = gcd(a, s)`, and the above asserting that `p` is also divisible by `g`, we can
// denote `a' = a/g`, `s' = s/g`, `p' = p/g`, then this becomes equivalent to:
// With `g = gcd(a, s)`, and the above condition asserting that `p` is also divisible by
// `g`, we can denote `a' = a/g`, `s' = s/g`, `p' = p/g`, then this becomes equivalent to:
//
// ` p' + s'o = 0 mod a' `
// ` o = (a' - (p' mod a')) * (s'^-1 mod a') `
@ -1259,11 +1268,23 @@ pub(crate) unsafe fn align_offset<T: Sized>(p: *const T, a: usize) -> usize {
//
// Furthermore, the result produced by this solution is not "minimal", so it is necessary
// to take the result `o mod lcm(s, a)`. We can replace `lcm(s, a)` with just a `a'`.
let a2 = a >> gcdpow;
let a2minus1 = a2.wrapping_sub(1);
let s2 = smoda >> gcdpow;
let minusp2 = a2.wrapping_sub(pmoda >> gcdpow);
return (minusp2.wrapping_mul(mod_inv(s2, a2))) & a2minus1;
// SAFETY: `gcdpow` has an upper-bound not greater than the number of trailing 0-bits in
// `a`.
let a2 = unsafe { unchecked_shr(a, gcdpow) };
// SAFETY: `a2` is non-zero. Shifting `a` by `gcdpow` cannot shift out any of the set bits
// in `a` (of which it has exactly one).
let a2minus1 = unsafe { unchecked_sub(a2, 1) };
// SAFETY: `gcdpow` has an upper-bound not greater than the number of trailing 0-bits in
// `a`.
let s2 = unsafe { unchecked_shr(smoda, gcdpow) };
// SAFETY: `gcdpow` has an upper-bound not greater than the number of trailing 0-bits in
// `a`. Furthermore, the subtraction cannot overflow, because `a2 = a >> gcdpow` will
// always be strictly greater than `(p % a) >> gcdpow`.
let minusp2 = unsafe { unchecked_sub(a2, unchecked_shr(pmoda, gcdpow)) };
// SAFETY: `a2` is a power-of-two, as proven above. `s2` is strictly less than `a2`
// because `(s % a) >> gcdpow` is strictly less than `a >> gcdpow`.
return wrapping_mul(minusp2, unsafe { mod_inv(s2, a2) }) & a2minus1;
}
// Cannot be aligned at all.