mirror of
https://github.com/rust-lang/rust.git
synced 2024-11-01 06:51:58 +00:00
Auto merge of #50352 - porglezomp:btree-no-empty-alloc, r=Gankro
Don't allocate when creating an empty BTree Following the discussion in #50266, this adds a static instance of `LeafNode` that empty BTrees point to, and then replaces it on `insert`, `append`, and `entry`. This avoids allocating for empty maps. Fixes #50266 r? @Gankro
This commit is contained in:
commit
e6db79f2ca
@ -246,6 +246,7 @@ impl<K, Q: ?Sized> super::Recover<Q> for BTreeMap<K, ()>
|
||||
}
|
||||
|
||||
fn replace(&mut self, key: K) -> Option<K> {
|
||||
self.ensure_root_is_owned();
|
||||
match search::search_tree::<marker::Mut, K, (), K>(self.root.as_mut(), &key) {
|
||||
Found(handle) => Some(mem::replace(handle.into_kv_mut().0, key)),
|
||||
GoDown(handle) => {
|
||||
@ -523,7 +524,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
pub fn new() -> BTreeMap<K, V> {
|
||||
BTreeMap {
|
||||
root: node::Root::new_leaf(),
|
||||
root: node::Root::shared_empty_root(),
|
||||
length: 0,
|
||||
}
|
||||
}
|
||||
@ -544,7 +545,6 @@ impl<K: Ord, V> BTreeMap<K, V> {
|
||||
/// ```
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
pub fn clear(&mut self) {
|
||||
// FIXME(gereeter) .clear() allocates
|
||||
*self = BTreeMap::new();
|
||||
}
|
||||
|
||||
@ -890,6 +890,8 @@ impl<K: Ord, V> BTreeMap<K, V> {
|
||||
/// ```
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
pub fn entry(&mut self, key: K) -> Entry<K, V> {
|
||||
// FIXME(@porglezomp) Avoid allocating if we don't insert
|
||||
self.ensure_root_is_owned();
|
||||
match search::search_tree(self.root.as_mut(), &key) {
|
||||
Found(handle) => {
|
||||
Occupied(OccupiedEntry {
|
||||
@ -910,6 +912,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
|
||||
}
|
||||
|
||||
fn from_sorted_iter<I: Iterator<Item = (K, V)>>(&mut self, iter: I) {
|
||||
self.ensure_root_is_owned();
|
||||
let mut cur_node = last_leaf_edge(self.root.as_mut()).into_node();
|
||||
// Iterate through all key-value pairs, pushing them into nodes at the right level.
|
||||
for (key, value) in iter {
|
||||
@ -1019,6 +1022,7 @@ impl<K: Ord, V> BTreeMap<K, V> {
|
||||
let total_num = self.len();
|
||||
|
||||
let mut right = Self::new();
|
||||
right.root = node::Root::new_leaf();
|
||||
for _ in 0..(self.root.as_ref().height()) {
|
||||
right.root.push_level();
|
||||
}
|
||||
@ -1153,6 +1157,13 @@ impl<K: Ord, V> BTreeMap<K, V> {
|
||||
|
||||
self.fix_top();
|
||||
}
|
||||
|
||||
/// If the root node is the shared root node, allocate our own node.
|
||||
fn ensure_root_is_owned(&mut self) {
|
||||
if self.root.is_shared_root() {
|
||||
self.root = node::Root::new_leaf();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#[stable(feature = "rust1", since = "1.0.0")]
|
||||
@ -1290,6 +1301,10 @@ impl<K, V> Drop for IntoIter<K, V> {
|
||||
self.for_each(drop);
|
||||
unsafe {
|
||||
let leaf_node = ptr::read(&self.front).into_node();
|
||||
if leaf_node.is_shared_root() {
|
||||
return;
|
||||
}
|
||||
|
||||
if let Some(first_parent) = leaf_node.deallocate_and_ascend() {
|
||||
let mut cur_node = first_parent.into_node();
|
||||
while let Some(parent) = cur_node.deallocate_and_ascend() {
|
||||
|
@ -60,12 +60,12 @@ pub const CAPACITY: usize = 2 * B - 1;
|
||||
///
|
||||
/// See also rust-lang/rfcs#197, which would make this structure significantly more safe by
|
||||
/// avoiding accidentally dropping unused and uninitialized keys and values.
|
||||
///
|
||||
/// We put the metadata first so that its position is the same for every `K` and `V`, in order
|
||||
/// to statically allocate a single dummy node to avoid allocations. This struct is `repr(C)` to
|
||||
/// prevent them from being reordered.
|
||||
#[repr(C)]
|
||||
struct LeafNode<K, V> {
|
||||
/// The arrays storing the actual data of the node. Only the first `len` elements of each
|
||||
/// array are initialized and valid.
|
||||
keys: [K; CAPACITY],
|
||||
vals: [V; CAPACITY],
|
||||
|
||||
/// We use `*const` as opposed to `*mut` so as to be covariant in `K` and `V`.
|
||||
/// This either points to an actual node or is null.
|
||||
parent: *const InternalNode<K, V>,
|
||||
@ -77,10 +77,14 @@ struct LeafNode<K, V> {
|
||||
|
||||
/// The number of keys and values this node stores.
|
||||
///
|
||||
/// This is at the end of the node's representation and next to `parent_idx` to encourage
|
||||
/// the compiler to join `len` and `parent_idx` into the same 32-bit word, reducing space
|
||||
/// overhead.
|
||||
/// This next to `parent_idx` to encourage the compiler to join `len` and
|
||||
/// `parent_idx` into the same 32-bit word, reducing space overhead.
|
||||
len: u16,
|
||||
|
||||
/// The arrays storing the actual data of the node. Only the first `len` elements of each
|
||||
/// array are initialized and valid.
|
||||
keys: [K; CAPACITY],
|
||||
vals: [V; CAPACITY],
|
||||
}
|
||||
|
||||
impl<K, V> LeafNode<K, V> {
|
||||
@ -97,8 +101,26 @@ impl<K, V> LeafNode<K, V> {
|
||||
len: 0
|
||||
}
|
||||
}
|
||||
|
||||
fn is_shared_root(&self) -> bool {
|
||||
self as *const _ == &EMPTY_ROOT_NODE as *const _ as *const LeafNode<K, V>
|
||||
}
|
||||
}
|
||||
|
||||
// We need to implement Sync here in order to make a static instance.
|
||||
unsafe impl Sync for LeafNode<(), ()> {}
|
||||
|
||||
// An empty node used as a placeholder for the root node, to avoid allocations.
|
||||
// We use () in order to save space, since no operation on an empty tree will
|
||||
// ever take a pointer past the first key.
|
||||
static EMPTY_ROOT_NODE: LeafNode<(), ()> = LeafNode {
|
||||
parent: ptr::null(),
|
||||
parent_idx: 0,
|
||||
len: 0,
|
||||
keys: [(); CAPACITY],
|
||||
vals: [(); CAPACITY],
|
||||
};
|
||||
|
||||
/// The underlying representation of internal nodes. As with `LeafNode`s, these should be hidden
|
||||
/// behind `BoxedNode`s to prevent dropping uninitialized keys and values. Any pointer to an
|
||||
/// `InternalNode` can be directly casted to a pointer to the underlying `LeafNode` portion of the
|
||||
@ -168,6 +190,21 @@ unsafe impl<K: Sync, V: Sync> Sync for Root<K, V> { }
|
||||
unsafe impl<K: Send, V: Send> Send for Root<K, V> { }
|
||||
|
||||
impl<K, V> Root<K, V> {
|
||||
pub fn is_shared_root(&self) -> bool {
|
||||
self.as_ref().is_shared_root()
|
||||
}
|
||||
|
||||
pub fn shared_empty_root() -> Self {
|
||||
Root {
|
||||
node: unsafe {
|
||||
BoxedNode::from_ptr(NonNull::new_unchecked(
|
||||
&EMPTY_ROOT_NODE as *const _ as *const LeafNode<K, V> as *mut _
|
||||
))
|
||||
},
|
||||
height: 0,
|
||||
}
|
||||
}
|
||||
|
||||
pub fn new_leaf() -> Self {
|
||||
Root {
|
||||
node: BoxedNode::from_leaf(Box::new(unsafe { LeafNode::new() })),
|
||||
@ -209,6 +246,7 @@ impl<K, V> Root<K, V> {
|
||||
/// new node the root. This increases the height by 1 and is the opposite of `pop_level`.
|
||||
pub fn push_level(&mut self)
|
||||
-> NodeRef<marker::Mut, K, V, marker::Internal> {
|
||||
debug_assert!(!self.is_shared_root());
|
||||
let mut new_node = Box::new(unsafe { InternalNode::new() });
|
||||
new_node.edges[0] = unsafe { BoxedNode::from_ptr(self.node.as_ptr()) };
|
||||
|
||||
@ -353,12 +391,16 @@ impl<BorrowType, K, V, Type> NodeRef<BorrowType, K, V, Type> {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn keys(&self) -> &[K] {
|
||||
self.reborrow().into_slices().0
|
||||
pub fn is_shared_root(&self) -> bool {
|
||||
self.as_leaf().is_shared_root()
|
||||
}
|
||||
|
||||
pub fn vals(&self) -> &[V] {
|
||||
self.reborrow().into_slices().1
|
||||
pub fn keys(&self) -> &[K] {
|
||||
self.reborrow().into_key_slice()
|
||||
}
|
||||
|
||||
fn vals(&self) -> &[V] {
|
||||
self.reborrow().into_val_slice()
|
||||
}
|
||||
|
||||
/// Finds the parent of the current node. Returns `Ok(handle)` if the current
|
||||
@ -433,6 +475,7 @@ impl<K, V> NodeRef<marker::Owned, K, V, marker::Leaf> {
|
||||
marker::Edge
|
||||
>
|
||||
> {
|
||||
debug_assert!(!self.is_shared_root());
|
||||
let node = self.node;
|
||||
let ret = self.ascend().ok();
|
||||
Global.dealloc(node.as_opaque(), Layout::new::<LeafNode<K, V>>());
|
||||
@ -500,30 +543,51 @@ impl<'a, K, V, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn keys_mut(&mut self) -> &mut [K] {
|
||||
unsafe { self.reborrow_mut().into_slices_mut().0 }
|
||||
fn keys_mut(&mut self) -> &mut [K] {
|
||||
unsafe { self.reborrow_mut().into_key_slice_mut() }
|
||||
}
|
||||
|
||||
pub fn vals_mut(&mut self) -> &mut [V] {
|
||||
unsafe { self.reborrow_mut().into_slices_mut().1 }
|
||||
fn vals_mut(&mut self) -> &mut [V] {
|
||||
unsafe { self.reborrow_mut().into_val_slice_mut() }
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Immut<'a>, K, V, Type> {
|
||||
pub fn into_slices(self) -> (&'a [K], &'a [V]) {
|
||||
unsafe {
|
||||
(
|
||||
fn into_key_slice(self) -> &'a [K] {
|
||||
// When taking a pointer to the keys, if our key has a stricter
|
||||
// alignment requirement than the shared root does, then the pointer
|
||||
// would be out of bounds, which LLVM assumes will not happen. If the
|
||||
// alignment is more strict, we need to make an empty slice that doesn't
|
||||
// use an out of bounds pointer.
|
||||
if mem::align_of::<K>() > mem::align_of::<LeafNode<(), ()>>() && self.is_shared_root() {
|
||||
&[]
|
||||
} else {
|
||||
// Here either it's not the root, or the alignment is less strict,
|
||||
// in which case the keys pointer will point "one-past-the-end" of
|
||||
// the node, which is allowed by LLVM.
|
||||
unsafe {
|
||||
slice::from_raw_parts(
|
||||
self.as_leaf().keys.as_ptr(),
|
||||
self.len()
|
||||
),
|
||||
slice::from_raw_parts(
|
||||
self.as_leaf().vals.as_ptr(),
|
||||
self.len()
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn into_val_slice(self) -> &'a [V] {
|
||||
debug_assert!(!self.is_shared_root());
|
||||
unsafe {
|
||||
slice::from_raw_parts(
|
||||
self.as_leaf().vals.as_ptr(),
|
||||
self.len()
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn into_slices(self) -> (&'a [K], &'a [V]) {
|
||||
let k = unsafe { ptr::read(&self) };
|
||||
(k.into_key_slice(), self.into_val_slice())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
|
||||
@ -535,20 +599,33 @@ impl<'a, K: 'a, V: 'a, Type> NodeRef<marker::Mut<'a>, K, V, Type> {
|
||||
}
|
||||
}
|
||||
|
||||
pub fn into_slices_mut(mut self) -> (&'a mut [K], &'a mut [V]) {
|
||||
unsafe {
|
||||
(
|
||||
fn into_key_slice_mut(mut self) -> &'a mut [K] {
|
||||
if mem::align_of::<K>() > mem::align_of::<LeafNode<(), ()>>() && self.is_shared_root() {
|
||||
&mut []
|
||||
} else {
|
||||
unsafe {
|
||||
slice::from_raw_parts_mut(
|
||||
&mut self.as_leaf_mut().keys as *mut [K] as *mut K,
|
||||
self.len()
|
||||
),
|
||||
slice::from_raw_parts_mut(
|
||||
&mut self.as_leaf_mut().vals as *mut [V] as *mut V,
|
||||
self.len()
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
fn into_val_slice_mut(mut self) -> &'a mut [V] {
|
||||
debug_assert!(!self.is_shared_root());
|
||||
unsafe {
|
||||
slice::from_raw_parts_mut(
|
||||
&mut self.as_leaf_mut().vals as *mut [V] as *mut V,
|
||||
self.len()
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
fn into_slices_mut(self) -> (&'a mut [K], &'a mut [V]) {
|
||||
let k = unsafe { ptr::read(&self) };
|
||||
(k.into_key_slice_mut(), self.into_val_slice_mut())
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> {
|
||||
@ -556,6 +633,7 @@ impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> {
|
||||
pub fn push(&mut self, key: K, val: V) {
|
||||
// Necessary for correctness, but this is an internal module
|
||||
debug_assert!(self.len() < CAPACITY);
|
||||
debug_assert!(!self.is_shared_root());
|
||||
|
||||
let idx = self.len();
|
||||
|
||||
@ -571,6 +649,7 @@ impl<'a, K, V> NodeRef<marker::Mut<'a>, K, V, marker::Leaf> {
|
||||
pub fn push_front(&mut self, key: K, val: V) {
|
||||
// Necessary for correctness, but this is an internal module
|
||||
debug_assert!(self.len() < CAPACITY);
|
||||
debug_assert!(!self.is_shared_root());
|
||||
|
||||
unsafe {
|
||||
slice_insert(self.keys_mut(), 0, key);
|
||||
@ -884,6 +963,7 @@ impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge
|
||||
fn insert_fit(&mut self, key: K, val: V) -> *mut V {
|
||||
// Necessary for correctness, but in a private module
|
||||
debug_assert!(self.node.len() < CAPACITY);
|
||||
debug_assert!(!self.node.is_shared_root());
|
||||
|
||||
unsafe {
|
||||
slice_insert(self.node.keys_mut(), self.idx, key);
|
||||
@ -1061,6 +1141,7 @@ impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::KV>
|
||||
/// allocated node.
|
||||
pub fn split(mut self)
|
||||
-> (NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, K, V, Root<K, V>) {
|
||||
debug_assert!(!self.node.is_shared_root());
|
||||
unsafe {
|
||||
let mut new_node = Box::new(LeafNode::new());
|
||||
|
||||
@ -1098,6 +1179,7 @@ impl<'a, K, V> Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::KV>
|
||||
/// now adjacent key/value pairs to the left and right of this handle.
|
||||
pub fn remove(mut self)
|
||||
-> (Handle<NodeRef<marker::Mut<'a>, K, V, marker::Leaf>, marker::Edge>, K, V) {
|
||||
debug_assert!(!self.node.is_shared_root());
|
||||
unsafe {
|
||||
let k = slice_remove(self.node.keys_mut(), self.idx);
|
||||
let v = slice_remove(self.node.vals_mut(), self.idx);
|
||||
|
Loading…
Reference in New Issue
Block a user